EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR GREELEY, COLORADO

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-83

5	0	2	7	2	1	0	1

REPORT DOCUMENTATION 1. REPORT NO. PAGE	2.	3. Recipient's Accession No.
4. Title and Subtitle EFFECTS OF A CATTLE FEEDLOT ON GRO		5. Report Date TH 1981
PLATTE RIVER VALLEY, NEAR GREELI	EY, COLORADO	6.
7. Author(s)		8. Performing Organization Rept. No. USGS/WRI 80-83
9. Performing Organization Name and Address		10. Project/Task/Work Unit No.
U.S. Geological Survey, Water Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225	r Resources Division	11. Contract(C) or Grant(G) No. (C) (G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Box 25046, Mail Stop 415	r Resources Division	13. Type of Report & Period Covered Final
Denver Federal Center Lakewood, CO 80225 15. Supplementary Notes		14.

16. Abstract (Limit: 200 words)

Ground-water quality may be changed by leachate from feedlots because large quantities of wastes are generated. The potential for water quality to be affected is especially high in alluvial aquifers with a shallow depth to water. However, monitoring water quality in 19 observation wells in and near a feedlot stocked with 90,000 head of beef cattle from April 1974, before the lot was stocked, to June 1978, has shown little change in ground-water quality that can be attributed to the feedlot. Analyses of water from two lysimeters in the unsaturated zone indicate leachate from the feedlot has percolated to a depth of at least 5 feet but not to a depth of 20 feet. The small changes in ground-water quality caused by the feedlot are likely due to the limited available recharge, a relatively impermeable manure pack and soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone.

17. Document Analysis a. Descriptors

Colorado, Ground water, Water quality, Nitrates, Farm wastes, Water table

b. Identifiers/Open-Ended Terms

Feedlot, South Platte River valley

c. COSATI Field/Group

18. Availability Statement	19. Security Class (This Report)	21. No. of Pages 82
No restriction on distribution	20. Security Class (This Page)	22. Price

EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER

QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR

GREELEY, COLORADO

By R. G. Borman

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 80-83

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Doyle G. Frederick, Acting Director

For additional information write to:

Colorado District Chief U.S. Geological Survey, MS 415 Box 25046, Denver Federal Center Lakewood, CO 80225

CONTENTS

			Page
			1
Introduc	ction		1
Ground-v	vater h	nydrology	3
Water qu	uality-		12
			20
Selected	reter	ences	20
Suppleme	ental i	nformation	23
		ILLUSTRATIONS	
-•	4.0		Page
Figures	1-3.	Maps showing:	2
		 Location of study area Location of wells, lysimeters, and runoff-retention 	2
		ponds	4
		3. Bedrock topography	5
	4.	Geologic section through the feedlot	6
	5-8.	Maps showing:	
		5. Depth to bedrock	7
		6. Water table, March 1978	9
		7. Depth to water, March 1978	10
		8. Saturated thickness of the alluvial aquifer, March	11
	9-13.	Graphs showing:	11
	J-13.	9. Chloride concentrations in water from selected	
		wells in and near the feedlot	15
		10. Nitrate concentrations in water from selected wells	
		in and near the feedlot	15
		11. Chloride concentrations in water from selected	
		wells outside the feedlot	16
		12. Nitrate concentrations in water from selected wells	
		outside the feedlot	16
		13. Monthly precipitation at the feedlot and pan evap-	17
	14.	oration at Fort Collins Diagram showing system of numbering wells using township,	17.
	17.	range, and section	25
		range, and section	

TABLES

			Page
Table	1.	Minimum, median, and maximum concentrations of selected properties and dissolved constituents in water from 19 observation wells, April 1974	13
	2.	Comparison between median concentrations of selected chemical constituents in water from the alluvial aquifer and concentrations of selected chemical constituents in runoff from the feedlot	13
	3.	Chemical analyses of water from two lysimeters	18
	4.	Records of wells	26
	5.	Water-level records and chemical analyses of water from observation wells	28
	6.	Chemical analyses of water from domestic, stock, and irrigation wells	67
	7.	Chemical analyses of water from two runoff-retention ponds and from the feedlot water system supplied by eight wells	68
	8.	Logs of wells drilled by the U.S. Geological Survey	70
	9.	Particle-size analyses, statistical characteristics, specific gravity, moisture content, total porosity, and vertical hydraulic conductivity for samples from observation wells 13 and 28	76
	10.	Monthly precipitation, in inches, from January 1975 to September 1978 at weather stations operated by the feedlot owner at the feedlot and by the U.S. Department of	·
		Commerce, National Weather Service at Greeley, Colo	78

CONVERSION FACTORS

For the use of those readers who may prefer to use metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:

Multiply	By	To obtain
<pre>inch (in.) foot (ft) mile (mi) acre cubic foot (ft³) pound (lb) foot per day (ft/d) foot per mile foot per year (ft/yr)</pre>	25.40 0.3048 1.609 0.4047 0.02832 0.04536 0.3048 0.3048	millimeter meter kilometer hectare cubic meter kilogram meter per day meter per kilometer meter per year
foot squared per day (ft^2/d)	0.0929	meter squared per day

EFFECTS OF A CATTLE FEEDLOT ON GROUND-WATER QUALITY IN THE SOUTH PLATTE RIVER VALLEY NEAR GREELEY, COLORADO

By R. G. Borman

ABSTRACT

Changes in water quality in an alluvial aquifer resulting from the operation of a feedlot stocked with 90,000 cattle have been minimal. Monitoring water quality in 19 observation wells from April 1974, prior to the operation of the feedlot, to June 1978, after about 4 years of operation, indicates that chloride concentrations have increased slightly in one well downgradient from a runoff-retention pond. Chemical analyses of water from two lysimeters installed in the unsaturated zone indicate that leachate from the feedlot has percolated to a depth of at least 5 feet but has not percolated to a depth of 20 feet. The small changes in ground-water quality caused by the feedlot are likely the result of the limited available recharge, a relatively impermeable manure pack, soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone.

INTRODUCTION

Large cattle feedlots may produce organic waste loads comparable to those produced by a medium-sized city. In the western United States, feedlots are often located in valleys where water is available for irrigating crops produced for livestock feed. These valleys frequently contain permeable alluvial deposits and have a shallow depth to ground water. The combination of large quantities of wastes, permeable deposits, and shallow depth to water increases the potential for changes in ground-water quality.

A site near Greeley, Colo. (fig. 1), about 50 mi northeast of Denver, was chosen at which to monitor possible changes in ground-water quality resulting from operation of a feedlot. The climate in the area is semiarid, with an average annual precipitation of 11.47 in. during 1975-77, according to precipitation records collected at the feedlot by the operator. Stocking of the feedlot began April 26, 1974, and by the end of the year 50,000 cattle were fed each day at the site; by 1977, an average of 90,000 cattle were fed in the pens each day.

Figure 1 -- Location of study area.

The feedlot has an area of 500 acres of which 320 acres are fenced into pens. Storm runoff is collected in concrete-lined ditches and stored in two unlined retention ponds (fig. 2). The ponds also store overflow water from drinking troughs which are kept running during cold weather to prevent freezing. The storm water in the ponds is later mixed with water pumped from the aquifer and used for crop irrigation on adjacent land that is part of the feedlot complex. The pens do not have concrete or lined floors and are cleaned three or four times a year. The manure is used as fertilizer by landowners within 15 mi of the feedlot.

Nineteen observation wells and four lysimeters, similar to those described by Wood (1973), were installed in and near the feedlot during construction (fig. 2). Water samples were collected from the wells for chemical analysis prior to stocking of the feedlot. After stocking, samples were collected quarterly from most wells until June 1978. Samples also were collected intermittently from two of the lysimeters, the runoff-retention ponds, and the water supply at the feedlot. Samples could not be successfully obtained from the other two lysimeters.

The purpose of this report is to present the data collected in the immediate vicinity of the feedlot and provide a preliminary interpretation of that data. The data-collection network was not designed to define the regional aspects of the geohydrologic system or the effects of waste removed from the immediate vicinity of the feedlot.

The cooperation of the feedlot owner for allowing the installation and monitoring of the wells and lysimeters and for providing data on precipitation, feedlot operations, and the feedlot supply wells is gratefully acknowledged.

GROUND-WATER HYDROLOGY

The feedlot is located on a terrace in the South Platte River valley about 30 ft above the flood plain (fig. 2). The study area is underlain by alluvial sand and gravel deposits that comprise the aquifer.

The bedrock underlying the alluvial aquifer is the Laramie Formation of Late Cretaceous age. In the study area, the Laramie Formation primarily consists of shale that restricts vertical movement of water. Therefore, only the alluvial aquifer is subject to water-quality changes caused by the operation of the feedlot.

The altitude of the bedrock surface slopes from about 4,540 ft near the southwestern part of the study area to about 4,440 ft in the northeastern part of the study area (figs. 3 and 4). The depth to bedrock ranges from about 40 ft in the southwestern part of the study area to about 130 ft in the north-central part of the study area (fig. 5). The depth to bedrock in the feedlot ranges from about 65 ft near the southeastern runoff-retention pond to about 130 ft in the northern part.

Figure 2 -- Location of wells, lysimeters, and runoff-retention ponds.

Figure 4. -- Geologic section through the feedlot.

Figure 5. -- Depth to bedrock.

The aquifer underlying the feedlot is recharged by precipitation, the South Platte River, irrigation water applied to fields in excess of evapotranspiration, leakage from irrigation ditches and canals upgradient of the feedlot, and to some extent by infiltration of wastes from the livestock pens. Most of the water flowing beneath the feedlot entered the aquifer as recharge upgradient of the feedlot as indicated in figure 6. However, the data used to construct figure 6 was collected at a time when the effects of precipitation, streamflow, evapotranspiration, and pumpage were minimal.

The altitude of the water table in the alluvial aquifer ranges from about 4,568 ft in the western part of the study area to about 4,550 ft in the eastern part of the study area (figs. 4 and 6). Water moves generally at right angles to the water-table contours from higher to lower altitudes and is moving approximately from west to east beneath the feedlot. The hydraulic gradient across the feedlot is about 8 ft/mi. The depth to water in the study area ranges from zero at the South Platte River to about 35 ft in the center of the feedlot (fig. 7).

The saturated thickness of the alluvial aquifer ranges from about 10 ft in the southern part of the study area to about 110 ft northeast of the feedlot (fig. 8). In the feedlot, the saturated thickness ranges from about 35 ft near the southeastern runoff-retention pond to about 100 ft along the northern edge of the feedlot.

Hydraulic conductivity of the aquifer beneath the feedlot is estimated to be 170 ft/d, based on logs from 10 wells in the feedlot, and the porosity is estimated to be 0.4 on the basis of laboratory analyses of core samples from well 13 (depth interval 0 to 30 ft). The average ground-water velocity is estimated to be about 230 ft/yr based on the equation:

$$V = \frac{KI}{\emptyset} \times 365, \tag{1}$$

where:

V = ground-water velocity, in feet per year,

K = hydraulic conductivity, in feet per day,

I = hydraulic gradient (dimensionless), and

 \emptyset = porosity (dimensionless).

This estimate of ground-water velocity is probably lower than the average rate of ground-water movement beneath the feedlot because (1) the laboratory value of porosity is probably about two times greater than the average effective porosity of the aquifer and (2) gradients greater than 8 ft/mi are produced by the pumping wells within the feedlot.

Figure 6. -- Water table, March 1978.

Figure 7. -- Depth to water, March 1978.

Figure 8. -- Saturated thickness of the alluvial aquifer, March 1978.

WATER QUALITY

Chemical characteristics of water in the alluvial aquifer prior to stocking of the feedlot are summarized in table 1. A comparison between constituents in water in the aguifer prior to selected dissolved mineral stocking of the feedlot and in runoff from the feedlot after stocking shown in table 2. The sample of runoff was obtained from the southeastern runoff-retention pond following a storm in September 1976 when water quality should most closely represent that in leachate from the manure pack. chemical quality of water in the ponds varies as shown in table 7 in the Supplemental Information section at the back of this report, because overflow from drinking troughs as well as storm runoff is stored in the ponds.) Concentrations of all constituents used in the comparison except sulfate, sodium, and nitrate were greater in the runoff from the feedlot than the median content of water from the aquifer. Sodium concentration in the runoff may have been anomalous as McCalla, Ellis, Gilbertson, and Woods (1972) determined that the mean sodium concentration in feedlot wastes generally is about 1,050 mg/L. The smaller concentration of nitrate in the runoff may have resulted because much of the nitrogen was present as ammonia and organic nitrogen and because denitrification was probably occurring.

Nitrate is the chemical constituent most likely to be increased in ground water by leachate from the feedlot because of the large quantities of nitrate in feedlot wastes. A steer produces wastes containing about 0.4 lb of nitrogen daily (Taiganides and Hazen, 1966, p. 375). Therefore, the 90,000 cattle in the feedlot may produce about 36,000 lb of nitrogen daily. As much as 90 percent of the nitrogen in the manure may be lost to the atmosphere (McCalla and others, 1969, p. 5). If the remaining 10 percent of the nitrogen were mixed uniformly with the 106,000 ft³ of ground water estimated to be moving beneath the feedlot daily, the concentration of nitrate as nitrogen in the water would be about 540 mg/L.

Chloride is mobile in the ground-water environment and commonly is a good indicator of water-quality degradation (Robson, 1977, p. 13). Comparisons of nitrate and chloride concentrations from April 1974 to June 1978 and trends in the concentrations of these constituents were used to determine if the leachate from the feedlot had affected water quality in the aguifer.

There have been some changes in the quality of water from the 19 observation wells from April 1974, before the feedlot was stocked, to June 1978, but most changes appear to be unrelated to the feedlot. The median chloride concentration for samples from the 19 observation wells in June 1978 was 120 mg/L, compared with 100 mg/L in April 1974. The median nitrate as nitrogen concentration was 7.7 mg/L in June 1978, compared to 5.2 mg/L in April 1974. Increases in chloride and nitrate concentrations indicate some degradation of water quality. The variability of both chloride and nitrate concentrations is greater than observed changes and no major increasing trends for these constituents have been observed in water from wells most likely to be affected by leachate from the feedlot.

Table 1.--Minimum, mediun, and maximum concentrations of selected properties and dissolved constituents in water from 19 observation wells, April 1974

beviossib ,esenegneM (nM se J/pu)	0	120	4,900			ı
lron, dissolved (µg/L as Fe)	30	100	3,300	bəvlossib ,əsənegn (nM se J\gu)	MA 120	4,000
Phosphorus, ortho, dissolved (mg/L as P)	0.02	.03	.07	bevlossib ,nc (eg/k as re)	1	9,500
Witrogen, ammonia + organic, dissolved (mg/L as W)	0.02	.58	1.2	control or tho, size of the size of the size of the size of size of size of the size of t	0.03	100
Nitrogen, nitrate, dissolved (mg/L as N)	0.44	5.2	28	selected chamical concentrations the feed chamical feed chamical (mg/L as N) rrogen, ammonia + crogen, ammonia + crogen; ar N) rrogen, ammonia + crogen, ammonia + crogenic, dissolved (mg/L as N)		220
or som of solilos, sum of constituents, (mg/L)	1,360	1,810	3,560			9.1
beviossib ,ebiroul7 (mg/L as F)	1.0	1.5	2.1	oride, dissolved (mg/L as CI)	100	380
Chloride, dissolved (mg/L as Cl)	79	100	180	face, dissolved "marticological adults of face, dissolved" "marticological action of face, dissolved and face, dissolved are solved as \$10 to \$10 t	ns 880	480
b∋vlossib ,edellu2 (mg/L as \$0⊾)	099	880	2,000	lian cortination cortical cortination cortical cortination cortical cortica) i 8	1,810
Bicarbonate (mg/L as HCO ₃)	302	404	959	Constituents in water from the altwist aquifer and constituents in water from the altwist aquifer and cissolved dissolved diss		069
Potassium, dissolved (mg/L as K)	4.8	6.7	10	themical herry between the her		210
bevlozsib ,muibo2 (my/L as Na)	160	220	009	omparised the state of the stat		210
bəvlozsin, muizənyeM (pM ze J\pm)	72	96	160	of tri- cium, dissolved spin sel- mg/L as Ca)		- 540
bəviozzib ,muiɔlɛJ (sə ze 1/gm)	180	220	340	Table cons	ation er,	E
Hardness, noncarbon- ete (mg/L as CaCO ₃)	490	049	1,100		1 5 4- 1	ion from tern on pond, er 1976
e seanbre ^H (₆ 00e0 se J\gm)	Minimum 750	Median 960	Maximum1,500		Median concentr for the aquif April 1974	Concentration southeastern retention por September 19

Chloride (fig. 9) and nitrate (fig. 10) concentrations in water from wells 16, 25, 26, 30, and 32 that are either in the feedlot or downgradient from the feedlot illustrate the lack of consistent trends. Neither chloride nor nitrate has increased in water from wells 16 and 30. An overall but steady increase in chloride concentrations and an overall but not steady decrease in nitrate concentrations has occurred in water from wells 25 and If water in these wells was affected by leachate from the feedlot, an increase in both chloride and nitrate would be expected. A slightly more regular increase in chloride and a decrease in nitrate has occurred in water from well 32. This well is downgradient from the southeastern runoff-retention pond and water in the vicinity of the well may be slightly affected by runoff leaking from the pond. The decrease in the nitrate concentration the well water may be due to the relatively small nitrate concentration in water in the runoff-retention ponds, which ranged from 0.04 to 3.7 mg/L as nitrogen in four analyses.

Water from wells 6, 11, and 37, which should not be affected by feedlot operations because they are not downgradient from the feedlot, showed some changes in chloride concentrations from April 1974 to June 1978 (fig. 11). Water from well 6 had a fairly constant chloride concentration with a slight increase in chloride concentration from April 1974 to June 1978. Water from wells 11 and 37 had an irregular trend in chloride concentrations with an overall slight increase in chloride concentrations from April 1974 to June 1978.

Nitrate concentrations in water from wells 6 and 11 have been fairly constant with little overall change during the monitoring period (fig. 12). Water from well 37 had some variations in nitrate concentrations and a slight increase in nitrate from April 1974 to March 1978. There was a large increase in nitrate concentrations from March to June 1978 in water from this well.

The changes in water quality from sample to sample from the same well are due to differences in chemical quality of water moving past the well. These differences in water quality in the aquifer with time are caused largely by differences in concentrations of chemical constituents in recharge water reaching the aquifer, mostly upgradient of the sampling point. In the South Platte River valley, much recharge comes from irrigation water, both applied to fields and leaking from irrigation canals and ditches. The chemical quality of this water changes from year to year and seasonally. The quantity of irrigation water also changes seasonally. Pulses of recharge water with differences in chemical quality reach the aquifer and then move downgradient, causing differences in chemical quality with time at any sampling point.

Figure 9. -- Chloride concentrations in water from selected wells in and near the feedlot.

Figure 10. -- Nitrate concentrations in water from selected wells in and near the feedlot.

Figure 11. -- Chloride concentrations in water from selected wells outside the feedlot.

Figure 12. -- Nitrate concentrations in water from selected wells outside the feedlot.

Water samples from lysimeters installed at 5- and 20-ft depths below land surface in the unsaturated zone near wells 13, 14, 15, and 16 in the feedlot indicate that leachate from the feedlot surface has percolated to a depth of at least 5 ft but not to a depth of 20 ft (table 3). Lysimeter samples first obtained in July 1975 indicate leachate from the feedlot was present in the soil moisture at a depth of 5 ft below land surface. The small amount of water obtained from the shallower lysimeter had a nitrite plus nitrate concentration of 230 mg/L as nitrogen and a chloride concentration of 210 mg/L. Water from the deeper lysimeter had a nitrite plus nitrate concentration of 7.2 mg/L as nitrogen and a chloride concentration of 42 mg/L. The concentrations of nitrite plus nitrate and chloride have not changed significantly from July 1975 to June 1978.

Factors that may be responsible for the small changes in water quality in the alluvial aquifer in the study area, despite large quantities of wastes generated in the feedlot, include limited recharge from the feedlot because of a relatively impermeable manure pack and soil clogging under the pens, resulting in slow vertical movement of leachate in the unsaturated zone, soil clogging under the runoff-retention ponds, and denitrification in the unsaturated zone. The relatively small amount of precipitation and large potential evaporation (fig. 13) mean that little water is available for recharge. Cattle wastes and water sprinkled on the pens to control dust are potential sources of recharge. However, the total of all sources of recharge is relatively small in comparison to the quantity of water moving beneath the feedlot.

Figure 13. -- Monthly precipitation at the feedlot and pan evaporation at Fort Collins.

Infiltration to the unsaturated zone beneath the pens is inhibited by the relatively impermeable manure pack. The infiltration rate of undisturbed complete feedlot soil cores was reported by Mielke and Mazurak (1976, p. 344) to range from 1.2 x 10^{-4} ft/d to 7.5 x 10^{-4} ft/d. Clogging of pore spaces by organic material also occurs beneath the pens. Manure packs that are unused, however, dry and crack, thus opening the manure pack and the surrounding area to water and oxygen. Such conditions promote leaching of nitrate down the soil profile to the water table (Mielke and Ellis, 1976, p. 74).

Observation indicates that leakage from the unlined runoff-retention ponds may be restricted because of soil clogging by suspended material in the runoff water. Schuman and McCalla (1975, p. 115) also reported that feedlot lagoon water applied to soil cores caused clogging. When water levels in the ponds decline, the clogged soil dries, cracks, and may allow some leakage as water levels in the ponds rise and before clogging reoccurs.

Table 3.--Chemical analyses of

ample conductance	<u></u>		caco ₃)	dissolved s Ca)	dissolved Mg)	dissolved as Na)	rption	dissolved K)
Date of sample (Y-M-D)	(micromhos) pH (units)	Temperature (°C)	Hardness (mg/L as (Calcium, dis (mg/L as	Magnesium, (mg/L as 1	Sodium, dis (mg/L as	Sodium-adsorption ratio	Potassium, (mg/L as
			FT LYSIM	ETER				
75-07-23 4,5 76-06-29 5,0 76-09-22 76-12-08 13,7 77-03-08 13,7	00 7.2 20	27.0 12.5 			 	 320		 14
77-06-15 77-09-13 ¹ 4,2 77-12-06 78-03-09 ¹ 4,0 78-06-20	74		2,100	600	140 	320 	3.1	15
		2 <u>Q</u> -	FT LYSIM	ETER				
75-07-23 1,5 76-06-29 1,7 76-09-22 76-12-08 ¹ 1,6 77-03-08	00 6.9	23.0			 	 81		 18
77-06-15 77-09-13 ¹ 1,9 77-12-06 78-06-20	53		990 	290 	65 	92 	1.3	18

 $^{^{\}mathrm{l}}$ Laboratory value.

water from two lysimeters

Chloride, dissolved (mg/L as Cl)	Solids, residue, dissolved (mg/L)	Nitrogen, nitrate, dissolved (mg/L as N)	Nitrogen, nitrite, dissolved (mg/L as N)	Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	Nitrogen, ammonia, dissolved (mg/L as N)	lron, dissolved (μg/L as Fe)	Manganese, dissolved (µg/L as Mn)	Zinc, dissolved (µg/L as Zn)	Carbon, organic, dissolved (mg/L as C)
			5	FT LYS	IMETER				
210 300	4,550	170	0.07	230 170	0.78				 36
200 230	2,950 3,750	150 220	.05	150 220	.41 .36				
 240	 3,670		.07		1.1	130	120	26,000	
		210	.10	210	•95				
220 260	3,330 4,090	120 240	.15 .00	120 240	.12				
200	4,050	240	.00	240	.00				
			20	-FT LYS	IMETER				
42 33	1,090	5.0	.17	7.2 5.2	.69				 8.9
32	1,210	3.5	.11	3.6	.50				
31	1,260	2.7	.05	2.7	.50				
 37 	1,370	6.9	.09 4.4	7.0 3.9	 .07 .06	100	170 	17,000	
34		2.9	.09	3.0	.01				

A relatively slow rate of vertical movement of leachate may mean that not enough time has elapsed for leachate to reach the saturated zone. The rate of vertical movement of water in the unsaturated zone under fields and animal pens in the middle South Platte Valley of Colorado has been estimated to be always less than 4 ft/yr and generally less than 1.2 ft/yr (Stewart and others, 1967a, p. 46).

Future changes in ground-water quality beneath the feedlot are likely to be minimal even when leachate reaches the saturated zone. The volume of water in the unsaturated zone reaching the water table is small, compared with the volume of ground water moving beneath the feedlot. Consequently, the concentrations of chemical constituents in the leachate will be diluted on reaching the saturated zone. Denitrification occurring in the soil profile also will lessen the impact of leachate on the concentration of nitrates in ground water. Concentrations of nitrite and nitrate nitrogen in water in the unsaturated zone under the feedlot should be larger than the potential of 540 mg/L calculated for ground water because of smaller volumes of water in the unsaturated zone. Water samples from the 5-ft lysimeter, however, averaged 190-mg/L nitrite and nitrate nitrogen for seven analyses, indicating denitrification is occurring in the soil profile under the manure pack.

SUMMARY

Water samples collected from 19 observation wells from April 1974, before the feedlot was stocked, to June 1978, when 90,000 cattle were fed, have indicated that few water-quality changes can be attributed to the feedlot despite the large quantities of generated waste. Water analyses from two lysimeters in the unsaturated zone indicate leachate from the feedlot has percolated to a depth of at least 5 ft but has not percolated to a depth of 20 ft. The small changes in ground-water quality caused by the feedlot are likely due to the limited available recharge, a relatively impermeable manure pack, soil clogging under the cattle pens resulting in slow vertical movement of leachate through the unsaturated zone, soil clogging under the unlined runoff-retention ponds, and denitrification in the unsaturated zone.

SELECTED REFERENCES

- Ciravolo, T. G., Martens, D. C., Hallock, D. L., Collins, E. R., Jr., Kornegag, E. T., and Thomas, H. R., 1979, Pollutant movement to shallow ground water tables from anaerobic swine waste lagoons: Journal of Environmental Quality, v. 8, no. 1, p. 126-130.
- Crosby, J. W., III, Johnstone, D. L., and Fenton, R. L., 1971, Migration of pollutants in a glacial outwash environment: Water Resources Research, v. 7, no. 1, p. 204-208.
- Elliott, L. F., McCalla, T. M., Mielke, L. N., and Travis, T. A., 1972, Ammonium, nitrate, and total nitrogen in the soil water of feedlot and field soil profiles: Applied Microbiology, v. 28, no. 4, p. 810-813.

- Gillham, R. W., and Webber, L. R., 1969, Nitrogen contamination of ground-water by barnyard leachates: Water Pollution Control Federation Journal, v. 41, no. 10, p. 1752-1762.
- Hurr, R. T., and Schneider, P. A., Jr., 1972, Hydrogeologic characteristics of the valley-fill aquifer in the Greeley reach of the South Platte River valley, Colorado: U.S. Geological Survey Open-File report, 2 p., 6 maps.
- Lorimor, J. C., Mielke, L. N., Elliott, L. F., and Ellis, J. R., 1972, Nitrate concentrations in groundwater beneath a beef cattle feedlot: Water Resources Bulletin, v. 8, no. 5, p. 999-1005.
- McCalla, T. M., Ellis, J. R., Gilbertson, C. B., and Woods, W. R., 1972, Chemical studies of solids, runoff, soil profile and groundwater from beef cattle feedlots at Mead, Nebraska: Cornell University Agricultural Waste Management Conference, Syracuse, N.Y., 1972, Proceedings, p. 211-223.
- McCalla, T. M., Ellis, J. R., and Woods, W. R., 1969, Changes in the chemical and biological properties of beef cattle manure during decomposition: Bacteriological Proceedings, p. 4-5.
- Mielke, L. N., and Ellis, J. R., 1976, Nitrogen in soil cores and ground water under abandoned cattle feedlots: Journal of Environmental Quality, v. 5, no. 1, p. 71-74.
- Mielke, L. N., Ellis, J. R., Swanson, N. P., Lorimor, J. C., and McCalla, T. M., 1970, Groundwater quality and fluctuations in a shallow unconfined aquifer under a level feedlot: Cornell University Agricultural Waste Management Conference, Rochester, N.Y., 1970, Proceedings, p. 31-40.
- Mielke, L. N., and Mazurak, A. P., 1976, Infiltration of water on a cattle feedlot: Transactions of the American Society of Agricultural Engineers, v. 19, no. 2, p. 341-344.
- Mosier, A. R., Haider, K., and Clark, F. E., 1972, Water soluble organic substances leachable from feedlot manure: Journal of Environmental Quality, v. 1, no. 3, p. 320-322.
- Robson, S. G., 1977, Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado: U.S. Geological Survey Water-Resources Investigations 76-132, 137 p.; available from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22161, as report PB-269 294/AS.
- Schuman, G. E., and McCalla, T. M., 1975, Chemical characteristics of a feedlot soil profile: Soil Science, v. 119, no. 2, p. 113-118.
- Stewart, B. A., Viets, F. G., Jr., Hutchinson, G. L., and Kemper, W. D., 1967a, Nitrate and other water pollutants under fields and feedlots: Environmental Science and Technology, v. 1, no. 9, p. 736-739.
- Stewart, B. A., Viets, F. G., Jr., Hutchinson, G. L., Kemper, W. D., Clark, F. E., Fairbourn, M. L., and Strauch, F., 1967b, Distribution of nitrates and other water pollutants under fields and corrals in the middle South Platte Valley of Colorado: U.S. Department of Agriculture, Agricultural Research Service, 41-134, 206 p.
- Taiganides, E. P., and Hazen, T. E., 1966, Properties of farm animal excreta: American Society of Agricultural Engineers Transactions, v. 9, no. 3, p. 374-376.

- Texas Tech University, 1971, Infiltration rates and ground-water quality beneath cattle feedlots, Texas High Plains: U.S. Environmental Protection Agency, Water Pollution Control Research Series 16060 EGS 01/71, 55 p.
- Wood, W. W., 1973, A technique using porous cups for water sampling at any depth in the unsaturated zone: Water Resources Research, v. 9, no. 2, p. 486-488.

SUPPLEMENTAL INFORMATION

System of Numbering Wells Using Township, Range, and Sections

The system of numbering wells using township, range, and section is illustrated in figure 14. The well numbers used in tables 4 to 10 are based on this numbering system.

Figure 14. -- System of numbering wells using township, range, and section.

Table 4.--Records of wells

[Use of well or water: H, domestic, I, irrigation, O, observation; S, stock, U, unused; Z, destroyed]

sisylens lesimed) d no 2 eldes ni	2,00	φ ω) 1	וא ו וא	~ ~
Water-level measure- Rents in table 5	Yes Y	, se			Yes Yes	Yes
Depth to bedrock (feet)		115		134	115 140 128	
Altitude of land surface has	4,555 4,555 4,575 4,575	4,585	4,575	4,599	4,595 4,592 4,599	4,599
Use of well or water	3 F F 0	- 0		- ഗ	0 % 0	0 0
Well yield (gallons per minute)	15			726	632	
netemb gnized (zedni)	2 2 2 4	। न	<u> </u>	92	4 91	4 4
Depth of well (feet)	 60 40 75	107	100	135	78 142 122	77
Interval open to the aquifer (feet)	50- 60	55 - 75		120-135	48- 78 127-142 118-122	73-77
and ar led	1964	1954	1960	1973	1974 1973 1973	1973
# 6 -	i ' i '		•			
Month and year drilled	July Apr.	May Mary		Mar.	May Dec.	Dec.
Colorado water well permit number	}		11866R)-RF Mar.	14412-RF May	Dec.
тэdлии 1 імтэд	July Apr.	May Mar.	11866R	11030-RF Mar.	14412-RF	U.S. Government Dec.
Colorado water well Tadmun jimnaq		11539R May	Roy Rothermon Claster Surfection	FeedlotR11030-RF Mar.	U.S. Government	

50 50 50 50	1 1	יע ה	י יי	72	i	2	r٧	2	1	2	ı	,	1	9	2	ı	1
,	1 1	< < <	ves.	Ves	!	, es	Yes	-kes	1	у́еѕ	;	;	!	-	Yes	}	-
	78	66 !	ļ	100	;	108	;	;	95	69	;	113	;	65	89	28	70
4,598 4,565 4,589 4,589 4,589	4,585 4,583	4,588	4,588	4,584	4,585	4,592	4,592	4,592	4,588	4,582	4,585	4,596	4,597	4,593	4,586	4,595	4,595
0 - 0 0 0	2 8	0 0	0	0	S	0	0	0	s	0	s	S	S	-	0	-	S
	30	 	E E 1		800	1	!	! ! !		1 1 1	725	614	1,000		1	895	20
7 8 7 7 7 7 7	ر م م	-1, -1	- 47	4	16	4	Ť	-3"	16	4	18	16	;	18	4	18	٠٠
50 37 113 73 38	93 85	96	94	96	160	103	89	44	97	89	89	114	85	62	9 9	70	20
56 - 60 109-113 69- 73 34- 38	65- 85	96 - 96		06 -09	140-160	99-103	89 -49	44 -04	82- 97	89 -84	38- 68	99-114	!	39- 62	89 - 49	59- 70	62- 70
1973 1935 1974 1974 1974	1970	1974	1974	1974	1973	1973	1974	1974	1973	1974	1953	1973	1961	1954	1974	1954	1960
	= =	= =	_	-		_		-	_					****			
Mar. 1	July 19 Aug. 19	Mar. 19		Mar. 1	Aug. 1	Dec. 1	Mar. 1	Mar. 1	Aug. 1	Mar. 1		Apr. 1	May 1	June 1	Mar. 1	-	Feb. 1
	July 1-RF Aug.					•	-		_	-		Apr.	Мау	June		Мау	Feb.
Dec Mar Mar.	July Aug.		Mar.		Aug.	•	-		Aug.	-	Feedlot					-	
ms 10480R		Mar.	U.S. Government Mar.	Mar.	15226-RF Aug.	U.S. Government Dec.	Mar.	Mar.	3998-RF Aug.	Mar.	8571R	R11681-RF Apr.	3129Ғ мау	8571R June	Mar.	10100R May	Feb.

¹Feet above National Geodetic Vertical Datum of 1929.

Table 5.--Water-level records and chemical [Well number 4 on figure 2. Local well number is SB00506333BBA1. Depth

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	4.55 5.03 4.34 4.93 4.84	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	2190 2190 2190 2190 2170	7.2 7.4 7.5 7.5	12.5 13.0 13.5 14.5 13.5	860 830 800 820 860	540 510 480 500 540	210 200 190 200 210
74-10-03 74-11-11 74-12-05 75-02-06 76-12-08	4.74 4.78 4.93 4.86 4.40	74-10-04 74-11-11 74-12-05 75-02-06 76-12-08	2160 2150 2400 2300 2100	7.2 6.8 7.1 7.5	13.5 13.0 13.0 12.5 13.5	850 770 840 830 840	520 450 520 510 530	210 200 210 200 200
77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	4.71 5.35 4.90 4.46 4.65	77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	2400 2400 2200 2200 2400	7.6 7.5 7.4 7.3 7.4	13.5 14.5 13.5 12.5 13.0	850 860 880 870 920	530 550 560 540 600	210 210 210 210 220
78-06-20	3.84	78-06-20	2300	7.4	13.5	910	570	220
DATE OF WATER-LEVEL MEASUREMENT		DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	4.55 5.03 4.34 4.93 4.84	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	1.3 1.2 1.3	17 17 20 17 17	1630 1570 1500 1580 1590	5.2 6.5 4.7	.51 .02 .01 	5.7 6.5 4.7 6.0 5.9
74-10-03 74-11-11 74-12-05 75-02-06 76-12-08	4.74 4.78 4.93 4.86 4.40	74-10-04 74-11-1 74-12-05 75-02-06 76-12-08	1.3 5.1.3 5.1.2	17 17 16 17 16	1630 1490 1570 1630 1650	6.7 5.7 6.6 9.4	.00 .00 .00 .00	5.8 6.7 5.7 6.6 9.4
77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	4.71 5.35 4.90 4.46 4.65	77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	1.3 1.3 1.3	18 16 17 17 16	1610 1650 1660 1650 1680	6.7 7.2 7.2 8.3 8.1	.01 .00 .00 .00	6.7 7.2 7.2 8.3 8.1
78-06-20	3.84	78-06-20	1.2	14	1650	7.0	.02	7.0

analyses of water from observation wells is 75 ft. Intervals open to the aquifer is 15 to 35 ft and 55 to 75 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)		POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
81 80 79 77 82	210 200 200 210 200	3.1 3.0 3.1 3.2 3.0	5.2 5.2 4.9 5.1 6.0	393 ' 389 386 389 388	0 0 0 	322 319 317 319 318	810 760 720 770 770	79 89 77 84 87
78 66 77 80 83	200 210 200 210 210	3.0 3.3 3.0 3.2 3.2	5.1 3.3 4.8 5.0 5.2	400 387 391 393 385	 0	328 317 321 322 316	810 700 760 800 820	83 73 85 92 86
80 81 87 84 89	210 210 220 200 190	3.1 3.1 3.2 3.0 2.7	5.1 5.1 4.9 5.1 5.2	396 380 390 400 390	0 0 0 0	325 312 320 330 320	770 820 810 810 800	90 88 89 85 130
88	210	3.0	5.2	420	0	340	780	97
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L) AS N)	ORGANIC	PHORUS,), IRON, DIS-	(UG/L)			
GEN, AMMONIA DIS- SOLVED (MG/L)	GEN,AM- MONIA - ORGANIC DIS. (MG/L	PHORUS, PORTHO DIS- SOLVED (MG/L	IRON, DIS- SOLVE	NESE, DIS- D SOLVED (UG/L)			
GEN, AMMONIA DIS- SOLVED (MG/L) AS N) .02 .02 .01	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .82 .27 .35	PHORUS, ORTHO DIS- SOLVED (MG/L AS P) .03 .01 .02 .05	30 130 30 30 130 20 20	NESE, DIS- D SOLVED (UG/L AS MN) 30 50 0)			
GEN, AMMONIA DIS- SOLVED (MG/L) AS N) .02 .02 .01 .01	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .82 .27 .35 .42 .23 .41 .24 .37	PHORUS, ORTHO DIS- SOLVED (MG/L AS P) .03 .01 .02 .05 .07 .04 .03 .05 .03	30 130 20 20 20 40 10 10	NESE, DIS- D SOLVED (UG/L AS MN) 30 50 0 0 0)			

Table 5.--Water-level records and chemical [Well number 6 on figure 2. Local well number is SB00506330CDC1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-04-08 74-06-14 74-07-23 74-08-27	26.58 26.90 23.78 25.82 25.43	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	2820 2810 2780 2760 2760	7.3 7.4 7.4 7.5	11.0 11.5 12.0 13.0 12.0	1000 1000 1000 970 990	640 640 620 600 620	290 290 280 270 280
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	24.82 25.48 26.00 26.51 25.88	74-10-04 74-11-11 74-12-05 75-02-06 75-05-14	2770 2900 3600 3100 3750	7.3 7.1 7.1 7.3	11.5 11.0 12.0 11.0 12.5	1100 920 1100 1100 1100	720 550 680 720 700	320 250 300 310 310
75-08-11 75-12-02 76-03-29 76-06-28 76-09-22	25.49 25.08 26.24 25.66 24.71	75-08-11 75-12-02 76-03-29 76-06-28 76-09-22	3800 3800 3000 2700 3000	7.5 7.4 7.5 7.2 7.1	13.5 12.5 11.5 12.5 12.0	1100 1100 1100 1100 1100	740 710 680 650 7 20	310 310 310 300 320
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	25.38 26.21 26.07 25.35 25.56	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2900 3200 3250 3100 3200	7.5 7.6 7.5 7.3 7.4	11.5 12.5 12.5 12.0 10.5	1200 1100 1200 1100 1100	760 730 760 710 730	320 320 330 320 310
78-04-09 78-06-20	26.56 26.04	78-03-09 78-06-20	3400 3000	7.4 7.6	11.0 12.0	1200 1200	780 770	330 330
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-04-08 74-06-14 74-07-23 74-08-27	26.58 26.90 23.78 25.82 25.43	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	1.1 1.0 .9 .9 1.0	19 19 22 19 19	2210 2070 2050 2040 2050	.73 1.5 1.7	.02 .01 .01 	.75 1.5 1.7 .88 .83
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	24.82 25.48 26.00 26.51 25.88	74-10-04 74-11-11 74-12-05 75-02-06 75-05-14	1.0 .8 1.4 .9	19 18 22 19 18	2190 2010 2200 2350 2300	1.1 .94 1.0 1.0	.00 .01 .00 .00	1.1 .95 1.0 1.0
75-08-11 75-12-02 76-03-29 76-06-28 76-09-22	25.49 25.08 26.24 25.66 24.71	75-08-11 75-12-02 76-03-29 76-06-28 76-09-22	1.0 1.1 .9 .9 1.0	18 18 18 18	2310 2340 2230 2130 2350	1.4 1.1 1.6 1.7 1.9	.01 .01 .00 .00	1.4 1.1 1.6 1.7 1.9
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	25.38 26.21 26.07 25.35 25.56	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	.9 .9 1.0 1.0	17 19 18 20 17	2340 2270 2350 2300 2460	.70 1.8 1.7 2.6 .69	.00 .01 .00 .00	.70 1.8 1.7 2.6 .70
78-04-09 78-06-20	26.56 26.04	78-03-09 78-06-20	•9 •9	16 15	2480 2410	.60 1.8	.01 .03	.61 1.8

analyses of water from observation wells--Continued

Depth is 89 ft. Interval open to the aquifer is 59 to 89 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
73 73 73 72 71	340 290 300 300 300	4.6 3.9 4.1 4.2 4.1	7.6 7.8 7.3 6.1 9.0	474 474 468 455 454	0 3 0 5 	389 389 384 373 372	1100 1000 1000 1000 1000	140 150 130 140 140
71 71 74 80 73	300 300 310 320 320	4.0 4.3 4.2 4.2 4.2	8.5 5.1 6.7 8.4 6.9	458 453 456 473 461	3 5 3	376 372 374 388 378	1100 1000 1100 1200 1200	140 140 150 170 140
85 78 78 78 80	310 340 310 310 320	4.0 4.5 4.1 4.1 4.1	8.1 8.5 8.6 8.0 8.4	472 465 506 515 494	5 0 5 0 5 0	387 381 415 422 405	1200 1200 1100 1000 1200	140 150 150 150 150
85 80 80 80 88	320 330 320 340 340	4.1 4.3 4.1 4.4 4.4	8.2 7.7 8.0 7.8 8.1	472 492 480 510 490	0 0	387 404 394 420 400	1200 1100 1200 1100 1300	150 160 150 170 150
88 88	340 360	4.3 4.5	8.3 8.0	490 510		400 4 20	1300 1200	150 150
NITRO- GEN, AMMONIA, DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.04 .08 .08	.45 .52 .61 	.02 .00 .02 .05	120 460 270 300 250	2000 1500 1600 1700 1700	 			
.02 .09 .04 .02 .00	.43 .52 .58 .46 .22	.01 .03 .05 .02	250 240 190 280 290	1600 1900 1400 1500 1700	 			
.03 .01 .03 .00	.63 .62 .59 .37 .48	.04 .04 .01 .05	260 210 240 220 270	1400 1400 1700 1800 2100	 6.8 4.6			
.00 .00 .00 .01	.60 .90 .41 .60	.01 .05 .04 .02	370 420 290 370	2200 2100 1800 1800 2000	 			
.01 .01	.99 .62	.01 .03	440 340	2400 2100				

Table 5.--Water-level records and chemical [Well number 11 on figure 2. Local well number is SB00506423CCC1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	27.33 27.65 26.99 25.60 24.17	74-04-03 74-05-08 74-06-13 74-07-24 74-08-27	2370 2320 2370 2350 2270	7.2 7.3 7.4 7.3	11.5 12.5 12.5 13.5 12.5	890 870 890 860 850	560 540 570 540 540	200 190 200 190 190
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	25.18 26.03 26.45 27.32 28.20	74-10-04 74-11-11 74-12-05 75-02-06 75-05-14	2310 2300 2500 2450 2900	7.4 7.0 7.1 7.1	12.0 12.0 12.0 11.5 12.5	860 850 880 870 910	550 530 560 550 600	190 200 200 190 200
75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	25.04 25.89 27.39 27.89 24.97	75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	3100 2700 2200 2500 2200	7.2 7.5 7.5 6.5 7.1	13.5 13.0 12.0 13.0 12.5	910 850 910 890 940	590 520 590 560 59 0	200 190 200 190 210
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	26.54 27.18 26.89 25.47 26.23	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2300 2600 2600 2600 2400	7.4 7.6 7.3 7.4 7.3	12.0 13.0 13.0 13.0 12.0	890 910 940 960 980	550 570 590 600 590	200 200 210 220 210
78-03-09 78-06-20	27.43 27.99	78-03-09 78-06-20	260 0 2500	7.3 7.7	13.0 13.5	1000 960	630 600	220 220
. 0- 00-20	-7.655	, 0 00 20						
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
DATE OF WATER-LEVEL	WATER LEVEL (FEET BELOW LAND	DATE OF	FLUO- RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRATE DIS- SOLVED (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	WATER LEVEL (FEET BELOW LAND SURFACE) 27.33 27.65 26.99 25.60	DATE OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-24	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 1.9 1.9 3.4 1.8	DIS- SOLVED (MG/L AS SIO2) 24 24 29 25	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1710 1690 1680 1660	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.8 8.3 7.5	GEN, NITRITE DIS- SOLVED (MG/L AS N) .12 .02 .01	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.9 8.3 7.5 8.1
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	WATER LEVEL (FEET BELOW LAND SURFACE) 27.33 27.65 26.99 25.60 24.17 25.18 26.03 26.45 27.32	DATE OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-24 74-08-27 74-10-04 74-11-11 74-12-05 75-02-06	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 1.9 1.9 3.4 1.8 1.8 1.7 1.4 1.6 1.7	DIS- SOLVED (MG/L AS SIO2) 24 24 29 25 25 25 25 24 25	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1710 1690 1680 1660 1620 1650 1670 1640 1640	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.8 8.3 7.5 7.0 7.9 9.0	GEN, NITRITE DIS- SOLVED (MG/L AS N) .12 .02 .01 .01	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.9 8.3 7.5 8.1 8.2 8.6 7.0 7.9 9.0
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-12 75-12-02 76-03-29 76-06-29	WATER LEVEL (FEET BELOW LAND SURFACE) 27.33 27.65 26.99 25.60 24.17 25.18 26.03 26.45 27.32 28.20 25.04 25.89 27.39 27.89	DATE OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-24 74-08-27 74-10-04 74-11-11 74-12-05 75-02-06 75-05-14 75-08-12 76-03-29 76-06-29	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 1.9 1.9 3.4 1.8 1.7 1.4 1.6 1.7 1.8	DIS- SOLVED (MG/L AS SIO2) 24 24 29 25 25 25 25 24 25 23 23 23 23 22	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1710 1690 1680 1660 1620 1650 1670 1640 1640 1690 1760 1640	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.8 8.3 7.5 7.0 7.9 9.0 8.7 7.9 7.2 7.4 7.7	GEN, NITRITE DIS- SOLVED (MG/L AS N) .12 .02 .01 .01 .00 .00 .00	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.9 8.3 7.5 8.1 8.2 8.6 7.0 7.9 9.0 8.7 7.9 7.2 7.4 7.7

analyses of water from observation wells--Continued Depth is 78 ft. Interval open to the aquifer is 48 to 78 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
96 95 96 94 92	230 230 220 230 220	3.3 3.4 3.2 3.4 3.3	6.7 6.2 6.4 6.3 7.6	404 394 390 394 387	0 0 0 	331 323 320 323 317	790 790 770 750 740	130 120 130 130 120
94 84 92 95 99	210 220 210 210 220	3.1 3.3 3.1 3.1 3.2	7.0 4.4 6.1 6.7 5.7	383 379 384 390 377	 0	314 311 315 320 309	780 800 760 750 780	120 120 120 130 140
99 90 100 100 100	220 220 210 240 230	3.2 3.3 3.0 3.5 3.3	7.1 6.9 7.0 6.6 6.7	386 401 395 402 419	0 0 0 0	317 329 324 330 344	830 760 780 810 880	150 120 140 150 140
96 100 100 100 110	230 230 230 240 220	3.3 3.3 3.4 3.1	6.6 6.4 6.5 6.5 6.6	421 412 420 440 470	0 0 0 0	345 338 344 360 390	830 830 820 860 800	140 96 150 150 120
110 100	210 240	2.9 3.4	7.4 6.6	460 440	0	380 360	810 7 90	140 170
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L	GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .10 .07 .03	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .66 .51 .69	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .04 .02 .05	DIS- SOLVED (UG/L AS FE) 50 30 10	NESE, DIS- SOLVED (UG/L AS MN) 30 0 0	ORGANIC DIS- SOLVED (MG/L			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .10 .07 .03 .03	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .66 .51 .69 .56 .31 .56 .37	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .04 .02 .05 .07 .02	DIS- SOLVED (UG/L AS FE) 50 30 10 40 30 80 20 10 30	NESE, DIS- SOLVED (UG/L AS MN) 30 0 0 0 0 0	ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .10 .07 .03 .03 .01 .01 .05 .01 .00 .00	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .66 .51 .69 .56 .37 .46 .34 .38 .73 .80 .29	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .04 .02 .05 .07 .02 .03 .04 .09 .03 .04 .09 .03	DIS- SOLVED (UG/L AS FE) 50 30 10 40 30 80 20 10 30 30 20 10 30 30	NESE, DIS- SOLVED (UG/L AS MN) 30 0 0 0 0 0 0 10 20 10	ORGANIC DIS- SOLVED (MG/L AS C)			

 $\label{thm:cal} \begin{tabular}{ll} Table 5.--Water-level records and chemical \\ [Well number 13 on figure 2. Local well number is SB00506423DCB1. \\ \end{tabular}$

	WATER	J	SPE-				MADD	
DATE OF WATER-LEVEL MEASUREMENT	LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
73-12-14 74-04-03 74-05-08 74-06-13 74-07-23	36.80 37.58 38.34 38.48 38.52	74-04-03 74-05-08 74-06-13 74-07-23	2290 2390 2380 2390	7.4 7.4 7.5 7.4	12.5 13.5 14.0 14.5	930 930 900 930	660 650 630 660	220 220 210 220
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	38.54 38.13 37.78 37.86 37.49	74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	2390 2390 2400 2400 2500	7.2 7.1 7.2	13.5 13.5 13.0 13.0 13.0	920 920 850 920 910	640 630 580 640 630	220 220 220 210 210
75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	38.15 38.77 38.54 38.23 38.85	75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	2900 3000 2650 2250 2300	7.3 7.3 7.1 7.6 7.1	13.5 14.5 13.0 12.0 13.5	900 900 920 910 900	630 64 0 650 640 630	220 210 220 220 210
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	39.41 37.64 38.07 39.09 38.40	76-09-22 76-12-08 77-03-08 77-06-15 77-09-12	2200 2200 2300 2370 2000	7.2 7.3 7.5 7.4 7.3	13.5 12.5 13.0 13.5 13.5	920 890 890 890 910	660 630 620 620 640	220 210 210 210 210 210
77-12-06 78-03-09 78-06-20	37.71 37.85 38.90	77 - 12 - 06 78 - 03 - 09 78 - 06 - 20	2200 2300 2300	7.2 7.2 7.3	12.5 13.0 13.5	940 940 910	670 660 630	220 220 200
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
73-12-14 74-04-03 74-05-08 74-06-13 74-07-23	36.80 37.58 38.34 38.48 38.52	74-04-03 74-05-08 74-06-13 74-07-23	1.2 1.2 1.1 1.2	20 21 25 21	1690 1760 1680 1740	4.7 5.0 4.6	.01 .00 .00	4.7 5.0 4.6 5.0
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	38.54 38.13 37.78 37.86 37.49	74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	1.3 1.2 1.0 1.2 1.1	21 22 21 21 21	1690 1730 1660 1700 1760	5.2 4.8 5.0	.01 .01 .00 .00	4.1 5.0 5.2 4.8 5.0
75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	38.15 38.77 38.54 38.23 38.85	75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	1.1 1.0 1.1 1.1	20 20 20 20 20 19	1690 1750 1740 1670 1770	4.9 4.9 4.7 4.9	.00 .01 .01 	4.9 4.9 4.7 5.1 4.9
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	39.41 37.64 38.07 39.09 38.40	76-09-22 76-12-08 77-03-08 77-06-15 77-09-12	1.1 1.1 1.2 1.2 1.2	20 20 21 20 22	1750 1700 1700 1690 1710	4.9 4.8 4.7 5.3 5.0	.01 .00 .01 .00	4.9 4.8 4.7 5.3 5.0
77-12-06 78-03-09 78-06-20	37.71 37.85 38.90	77-12-06 78-03-09 78-06-20	1.2 1.3 1.6	21 19 18	17 40 1720 1710	6.0 5.5 7.8	.01 .00 .02	6.0 5.5 7.8

analyses of water from observation wells--Continued

Depth is 122 ft. Interval open to the aquifer is 118 to 122 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
92 92 92 92 93	210 210 210 210 220	3.0 3.0 3.0 3.1	5.2 5.6 5.3 5.4	329 334 332 338	0 0 0	270 274 272 277	820 870 810 840	140 150 140 150
91 90 74 95 93	210 210 230 210 210	3.0 3.0 3.4 3.0 3.0	6.7 6.1 3.5 5.1 5.6	344 349 333 340 335	 	282 286 273 279 275	810 840 780 830 870	140 150 140 140 160
85 92 90 88 90	220 220 230 200 230	3.2 3.2 3.3 2.9 3.3	5.1 6.0 5.7 5.7 5.5	327 327 331 337 328	0 0 0 0	268 268 271 276 269	810 870 850 810 880	150 150 140 140 150
90 89 88 89 93	220 220 220 220 220 220	3.2 3.2 3.2 3.2 3.2	5.5 5.5 5.5 5.3 5.1	323 319 324 330 330	0 0 0 0	265 262 266 270 270	870 830 820 820 820	140 150 150 140 150
94 94 99	220 210 220	3.1 3.0 3.2	5.3 5.8 6.0	330 340 340	0 0 0	270 280 280	840 830 840	150 150 120
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.01 .02 .02	.43 .47 .54	.02 .01 .02	40 20 0 20	0 20 10 0	 			
.03 .04 .04 .08 .01	.45 .45 .61 .40	.06 .03 .01 .03	50 80 30 10 10	0 30 0 0	 			
.00 .00 .00	.25 .47 .73 	.04 .03 .04 .01	20 10 60 10 80	5 0 5 10 0	 4.5			
.00 .00 .00 .00	.26 .77 .40 .47	.05 .01 .04 .03	10 30 70 90 70	10 0 20 0	4.7			
.01 .00 .00	.48 .55 .92	.01 .01 .02	60 120 160	0 0 10				

Table 5.--Water-level records and chemical [Well number 14 on figure 2. Local well number is SB00506423DCB2.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
73-12-15 74-04-03 74-05-08 74-06-13 74-07-23	36.30 36.69 36.97 37.11 36.82	74-04-03 74-05-08 74-06-13 74-07-23	2540 2520 2520 2520 2540	7.4 7.4 7.4 7.2	12.5 13.5 13.5 14.5	960 1000 960 1000	640 680 640 680	220 220 220 220 220
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	36.50 36.19 36.26 36.41 36.86	74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	2530 2510 2400 2500 2600	7.3 7.1 7.2	13.0 14.0 12.5 13.0 12.5	980 990 840 910 940	660 670 530 590 610	210 230 210 200 210
75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	37.32 37.01 36.14 37.12 37.52	75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	2900 3100 2650 2500	7.4 7.2 7.2 7.1	13.0 14.0 12.5 	940 890 880 880 910	620 570 560 560 600	210 200 200 200 200
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	36.48 36.38 37.06 37.65 37.17	76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	2200 2200 2400 2450 2400	7.2 7.3 7.3 7.3 7.3	13.0 12.5 13.0 13.0 13.0	900 910 890 940 940	580 590 570 620 600	200 200 200 210 210
77-12-06 78-03-09 78-06-20	35.93 36.98 37.33	77-12-06 78-03-09 78-06-20	2400 2400 2400	7.2 7.2 7.4	12.0 12.5 13.0	940 980 980	590 810 640	210 210 210
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
73-12-15 74-04-03 74-05-08 74-06-13 74-07-23	36.30 36.69 36.97 37.11 36.82	74-04-03 74-05-08 74-06-13 74-07-23	1.7 1.4 1.5 1.6	24 25 28 24	1820 1880 1810 1860	8.8 8.8 8.8	.00 .00 .01	8.8 8.8 8.8 8.2
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	36.50 36.19 36.26 36.41 36.86	74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	1.5 1.5 1.4 1.5 1.4	24 25 24 23 24	1910 1840 1700 1770 1830	10 9.0 9.6	.01 .01 .00 .00	8.2 8.6 10 9.0 9.6
75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	37.32 37.01 36.14 37.12 37.52	75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	1.6 1.4 1.5 1.4 1.6	23 23 23 23 22	1780 1770 1740 1650 1820	10 8.9 9.8 11 9.6	.00 .01 .01 .00	10 8.9 9.8 11 9.6
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	36.48 36.38 37.06 37.65 37.17	76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	1.5 1.6 1.6	23 22 24 22 25	1830 1800 1760 1780 1800	10 13 9.5 9.1 9.9	.01 .00 .01 .00	10 13 9.5 9.1 9.9
77-12-06 78-03-09 78-06-20	35.93 36.98 37.33	77-12-06 78-03-09 78-06-20	1.6	25 22 19	1800 1690 1820	11 10 9.0	.01 .02 .01	11 10 9.0

analyses of water from observation wells--Continued

Depth is 77 ft. Interval open to the aquifer is 73 to 77 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR-	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
100 110 100 110	230 220 230 240	3.2 3.0 3.2 3.3	7.0 7.4 6.6 6.5	395 391 386 388	0 0 0	324 321 317 318	860 910 850 880	140 150 140 150
110 100 77 100 100	240 230 250 240 230	3.3 3.2 3.8 3.5 3.3	9.0 7.8 4.7 6.3 6.9	383 385 382 387 394	 	314 316 313 317 323	940 880 770 830 870	150 140 130 140 150
100 95 92 92 100	240 230 240 220 250	3.4 3.4 3.5 3.2 3.6	6.7 7.5 7.3 7.6 7.2	391 385 390 389 383	0 0 0 	321 316 320 319 314	810 840 810 730 860	150 140 130 140 150
98 100 96 100 100	240 230 240 230 240	3.5 3.3 3.5 3.3	7.2 7.1 6.9 6.9 6.6	388 392 395 390 410	0 0 0 0	318 322 324 320 340	880 850 800 830 820	140 140 150 150 150
100 110 110	240 230 240	3.4 3.2 3.3	7.2 7.5 7.1	420 210 410	0 0 0	340 170 340	820 810 840	140 150 150
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.02 .02 .02	.39 .58 .76	.04 .03 .02	280 10 30 20	20 20 0 0	 			
.03 .04 .02 .03	.62 .41 .62 .43	.08 .05 .04 .05 .03	400 30 20 10 10	0 10 0 10 10	 			
.00 .00 .01 .02	.04 .47 .78 .65 .55	.06 .04 .06 .03	20 10 40 30 60	10 10 0 10 0	4.3			
.00 .00 .00 .00	.46 .65 .48 .52	.04 .03 .06 .04 .05	60 50 100 150 110	10 0 10 0 10	3.4 			
.00 .00 .01	.31 .70 1.6	.03 .02 .04	150 110 80	8 0 10				

Table 5.--Water-level records and chemical [Well number 15 on figure 2. Local well number is SB00506423DCB3.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-06-13 74-07-23 74-08-27	36.16 36.43 36.32 35.89	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	2290 2290 2320 2330 2370	7.3 7.4 7.4 7.3	13.0 13.5 13.5 14.0 13.0	900 900 870 900 910	580 570 540 570 580	220 220 210 220 220
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	35.53 35.57 35.75 36.18 36.74	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2400 2400 2400 2500 2800	7.4 6.9 7.1 7.2	13.0 12.5 13.0 12.5 13.0	940 890 940 920 900	610 560 590 570 520	230 230 230 220 220
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	36.36 35.64 36.54 37.13 36.70	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	3000 2650 2150 2400 2100	7.1 7.0 7.5 7.1 7.1	14.0 12.5 12.0 13.0 13.0	910 920 900 880 920	530 520 520 520 530	220 230 220 210 220
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	35.76 36.41 37.70 36.84 36.16	76-12-08 77-03-08 77-06-15 77-09-12 77-12-06	2100 2200 2500 2300 2200	6.8 7.2 6.9 7.1 6.9	12.5 13.0 13.5 13.0 12.0	910 900 920 970 930	550 500 550 560 560	220 220 220 230 220
78-03-09 78-06-20	36.35 36.68	78-03-08 78-06-20	2400 2300	6.8 7.0	13.0 13.0	960 890	890 5 10	230 200
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-06-13 74-07-23 74-08-27	36.16 36.43 36.32 35.89	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.8 2.2 2.6 2.0 2.0	26 26 30 26 26	1740 1710 1650 1730 1740	8.0 8.6 8.8 8.7	.00 .00 .00 	8.0 8.6 8.8 9.8 8.7
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	35.53 35.57 35.75 36.18 36.74	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.9 2.0 2.0 1.9 2.0	26 26 25 26 25	1790 1760 1740 1800 1700	11 9.7 10 13	.01 .00 .00 .01	9.7 11 9.7 10 13
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	36.36 35.64 36.54 37.13 36.70	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	1.7 1.5 1.5 1.5	26 26 27 26 26	1710 1800 1670 1760 1800	9.8 10 10 8.8 7.7	.01 .01 .00 .00	9.8 10 10 8.8 7.7
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	35.76 36.41 37.70 36.84 36.16	76-12-08 77-03-08 77-06-15 77-09-12 77-12-06	1.2 1.4 1.5 1.5	29 29 28 31 29	1750 1730 1740 1770 1750	10 7.5 8.5 8.6 10	.00 .01 .00 .00	10 7.5 8.5 8.6 10
78-03-09 78-06-20	36.35 36.68	78-03-08 78-06-20	1.4 1.5	28 24	1600 1700	11 8.0	.00 .02	11 8.0

analyses of water from observation wells--Continued

Depth is 42 ft. Interval open to the aquifer is 40 to 42 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SGDIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
86 84 84 86 87	210 200 210 220 220	3.0 2.9 3.1 3.2 3.2	6.3 6.8 6.4 5.6 8.2	391 397 398 405 404	0 0 0 	321 326 326 332 331	880 840 780 830 840	86 95 88 94 96
88 77 88 91 84	210 230 220 220 220	3.0 3.4 3.1 3.2 3.2	7.5 4.7 6.2 6.8 6.4	397 408 419 427 457	 0	326 335 344 350 375	900 860 830 880 770	90 82 85 97 94
87 84 86 87 89	210 230 210 230 230	3.0 3.3 3.0 3.4 3.2	7.2 6.9 7.6 6.9 7.0	457 485 470 446 466	0 0 0 0	375 398 386 366 382	800 860 760 850 880	87 80 80 87 90
87 85 89 97 93	220 230 230 220 220	3.2 3.3 3.3 3.1 3.1	6.9 6.8 6.5 6.5	439 491 450 510 450	0 0 0 0	360 403 369 420 370	830 790 810 800 820	94 96 94 92 95
94 94	210 220	2.9 3.2	7.4 6.8	91 460	0	75 380	830 790	110 100
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.02 .03 .02 	.33 .53 .75 	.04 .01 .02 .08 .07	30 10 20 20 30	0 0 0 0	 			
.03 .01 .03 .01	.37 .54 .37 .49	.03 .03 .05 .03	50 20 50 30 90	0 0 0 0 10	 			
.00 .01 .03 .00	.30 1.1 .49 .42 .68	.04 .06 .03 .06	280 70 80 130 100	0 0 0 0 10	3.9 3.6			
.10 .01 .00 .00	.47 1.5 .64 .40 .21	.02 .06 .04 .04	70 130 130 170 110	0 10 10 10 8	 			
.00 .01	.74 1.5	.01 .03	110 180	10 5				

 $\label{thm:cal} \textbf{Table 5.--Water-level records and chemical} \\ \textbf{[Well number 16 on figure 2. Local well number is $SB00506423DCB4.} \\ \\ \textbf{(SB00506423DCB4.)} \\ \textbf{(SB00506423DCB4.)}$

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-05-08 74-06-13 74-07-23 74-08-27	36.50 36.68 36.60 36.08	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	2480 2440 2460 2470 2460	7.3 7.3 7.4 7.3	12.5 13.5 13.5 14.0 13.0	990 990 990 960 980	650 650 650 620 640	230 230 230 220 210
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	35.68 35.79 35.94 36.40 36.94	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2440 2420 2600 2600 3100	7.3 7.0 7.1 7.2	13.0 12.5 13.0 12.0 13.0	960 950 990 1000 970	630 620 650 650 630	220 230 230 240 230
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	36.56 35.68 36.66 37.05 36.01	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	3100 2650 2200 2400 2200	7.2 7.0 7.6 7.0 7.2	14.0 13.0 12.0 13.0 13.0	940 940 900 940 930	600 610 560 620 600	210 220 200 220 210
76-12-06 77-03-08 77-06-15 77-09-13 77-12-06	35.40 36.56 36.20 36.79 35.40	76-12-08 77-03-08 77-06-15 77-09-12 77-12-06	2200 2300 2280 2200 2200	7.3 7.2 7.5 7.4 7.1	12.0 13.0 13.5 13.0 12.0	920 910 880 920 920	590 580 560 580 580	210 210 200 210 210
78-03-09 78-06-20	36.45 36.88	78-03-09 78-06-20	2200 2300	7.1 7.3	13.0 13.0	930 900	890 570	210 200
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-05-08 74-06-13 74-07-23 74-08-27	36.50 36.68 36.60 36.08	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.8 2.0 2.3 1.9	23 23 28 24 24	1800 1830 1840 1800 1780	8.6 8.6 7.5 	.01 .00 .00 	8.6 8.6 7.5 9.0 9.3
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	35.68 35.79 35.94 36.40 36.94	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.8 1.5 1.8 1.7 1.9	24 24 23 24 23	1810 1800 1800 2290 1790	9.4 10 9.2 10	.01 .01 .00 .00	9.4 10 9.2 10
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	36.56 35.68 36.66 37.05 36.01	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	1.7 1.8 1.8 1.9	23 22 22 22 22	1830 1840 1740 1820 1810	9.8 9.4 10 10	.00 .01 .00 .00	9.8 9.4 10 10
76-12-06 77-03-08 77-06-15 77-09-13 77-12-06	35.40 36.56 36.20 36.79 35.40	76-12-08 77-03-08 77-06-15 77-09-12 77-12-06	1.9 1.9 1.9 1.9	22 24 22 2 4 23	1800 1750 1690 1720 1720	14 9.8 9.7 9.8 11	.00 .00 .00 .00	14 9.8 9.7 9.8 11
78-03-09 78-06-20	36.45 36.88	78-03-09 78-06-20	1.1 1.9	21 19	1530 1670	11 9.2	.00 .02	11 9.2

analyses of water from observation wells--Continued

Depth is 60 ft. Interval open to the aquifer is 56 to 60 ft]

MAGNE- SIUM,	SODIUM,	SCDIUM	POTAS- SIUM,	BICAR-		ALKA-	SULFATE,	CHLO- RIDE,
DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	AD- SORP- TION RATIO	DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	LINITY (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L
100 100 100 100 110	220 210 220 220 210	3.1 2.9 3.1 3.1 2.9	6.9 6.3 5.8 5.3 7.2	411 411 409 410 408	0 0 0 	337 337 335 336 335	870 910 910 880 850	AS CL) 110 110 110 110 120
100 91 100 100 95	220 220 220 350 220	3.1 3.1 3.1 4.8 3.1	6.8 3.3 5.8 6.4 5.8	409 407 409 445 409	 0	336 334 335 365 335	880 880 860 1200 860	110 110 120 100 110
100 95 97 96 99	220 230 210 230 220	3.1 3.3 3.0 3.3 3.1	6.6 6.5 6.7 6.3 6.2	406 398 402 402 401	0 0 0 0	333 326 335 330 329	900 910 850 880 900	120 120 110 120 110
96 94 93 96 96	220 220 220 220 220 220	3.2 3.2 3.2 3.2 3.2	6.3 6.0 5.9 5.6 6.3	399 401 390 410 410	0 0 0 0	327 329 320 340 340	860 840 800 810 800	120 110 110 110 110
98 98	210 220	3.0 3.2	6.3 6.0	48 410	0 0	39 340	800 760	110 120
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.02 .03 .03 	.58 .59 .63 	.04 .01 .01 .08 .06	100 10 20 20 20	0 10 0 0 20				
.03 .03 .04 .01	.43 .57 .42 .52	.04 .04 .04 .03	20 10 20 40 20	30 0 0 150 10	 			
.00 .04 .02 .00	.67 .99 .48 .42 .52	.06 .05 .04 .06	10 40 10 20 10	0 5 0 0 10	3.7 5.1			
.06 .00 .00	.53 .84 .35 .00	.03 .06 .05 .04	20 30 20 20	0 0 0	 			
.06 .00	1.4 .72	.02 .42	50	4				

Table 5.--Water-level records and chemical [Well number 18 on figure 2. Local well number is SB00506424CCA1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-03-25 74-04-04 74-05-08 74-06-14 74-07-23	32.50 32.60 32.98 33.09 33.30	74-04-04 74-05-09 74-06-14 74-07-24	2240 2240 2200 2210	6.9 7.3 7.4 7.5	13.0 13.5 14.0 14.5	830 790 820 820	500 490 520 520	210 200 210 210
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	33.23 32.90 32.73 32.81 33.05	74-08-28 74-10-03 74-11-11 74-12-05 75-02-06	2200 2200 2300 2400 2400	7.2 7.2 7.1	14.0 13.5 13.5 13.0 13.0	800 840 820 830 820	500 540 530 530 520	200 220 220 210 210
75-05-14 75-08-12 75-12-02 76-03-29 76-06-29	33.38 33.50 32.60 33.05 33.59	75-05-14 75-08-12 75-12-02 76-03-29 76-06-29	2800 2600 2700 2200 2200	7.2 7.5 7.4 7.6 6.8	14.0 14.0 13.5 13.0 14.0	840 880 820 810 850	550 580 520 510 540	210 230 210 210 220
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	32.97 32.74 33.08 33.85 33.83	76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	2100 2100 2200 2400 2200	7.3 7.4 7.5 7.3 7.4	13.5 13.5 13.5 14.0 14.0	830 830 820 840 830	520 530 520 530 520	210 210 210 210 210 210
77-12-06 78-03-09 78-06-20	32.99 33.10 33.18	77-12-06 78-03-09 78-06-20	2200 2250 2200	7.3 7.3 7.3	12.5 13.0 14.0	830 830 830	510 530 530	210 210 210
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	AS	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-03-25 74-04-04 74-05-08 74-06-14 74-07-23	32.50 32.60 32.98 33.09 33.30	74-04-04 74-05-09 74-06-14 74-07-24	1.1 1.2 1.1	18 17 17 18	1590 1610 1640 1610	3.4 4.0 5.3	.18 .04 .05	3.6 4.0 5.3 5.0
74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	33.23 32.90 32.73 32.81 33.05	74-08-28 74-10-03 74-11-11 74-12-05 75-02-06	1.1 1.0 1.2	17 18 17 17 18	1580 1640 1570 1590 1650	5.6 5.1 5.7	.00 .02 .01 .01	4.6 5.1 5.6 5.1 5.7
75-05-14 75-08-12 75-12-02 76-03-29 76-06-29	33.38 33.50 32.60 33.05 33.59	75-05-14 75-08-12 75-12-02 76-03-29 76-06-29	1.1 .8 1.1 1.2	17 17 11 16 16	1640 1660 1640 1620 1710	5.5 4.9 3.6 6.0 5.9	.01 .01 .00 .00	5.5 4.9 3.6 6.0 5.9
76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	32.97 32.74 33.08 33.85 33.83	76-09-22 76-12-08 77-03-08 77-06-15 77-09-13	3 1.1 3 1.3 5 1.3	16 16 18 16 18	1630 1680 1630 1630 1650	6.5 8.3 6.3 6.0 6.5	.01 .00 .01 .00	6.5 8.3 6.3 6.0 6.5
77-12-06 78-03-09 78-06-20	32.99 33.10 33.18	77-12-06 78-03-09 78-06-20	1.2	18 16 14	1630 1570 1610	7.9 7.1 6.6	.01 .00 .02	7.9 7.1 6.6

analyses of water from observation wells--Continued

Depth is 113 ft. Interval open to the aquifer is 109 to 113 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
74 71 71 72	210 210 220 220	3.2 3.2 3.4 3.3	6.7 5.3 4.9 4.5	400 372 359 361	0 0 0	328 305 294 296	770 810 830 790	89 97 86 93
73 71 66 74 72	220 210 210 210 210	3.4 3.2 3.2 3.2 3.2	6.3 5.5 3.5 4.6 5.1	361 363 361 363 364	 	296 298 296 298 299	770 820 760 780 830	93 89 94 87 100
77 73 71 70 72	210 210 230 210 230	3.2 3.1 3.5 3.2 3.4	5.7 5.7 5.4 5.4 5.4	352 361 359 370 368	0 0 0 0	289 296 294 303 302	830 830 820 810 870	88 94 100 91 86
73 75 72 76 75	220 220 220 220 220 220	3.3 3.3 3.3 3.3	5.5 5.4 5.4 5.3 5.0	366 364 367 370 380	0 0 0 0	300 299 301 303 310	800 850 800 810 820	90 91 90 86 87
73 74 75	220 190 220	3.3 2.9 3.3	5.2 5.4 5.3	380 370 370	0 0 0	310 300 300	800 780 780	82 83 89
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.06 .35 .14	.53 .68 .57	.02 .00 .05	150 1000 240 40	2000 950 1300 100	 			
.02 .04 .05 .06	.41 .24 .38 .25 .20	.07 .03 .03 .04	50 40 30 20 10	120 110 70 30 20	 			
.01 .00 .00 .02 .00	.18 .52 .34 .08	.06 .04 .04 .02 .06	30 60 40 10 20	20 0 5 10 0	 17			
.00 .06 .00 .00	.16 .21 .29 .32 .28	.07 .03 .05 .05	30 30 70 100 80	10 10 10 10 0	1.6 			
.01 .00 .00	.82 .54 1.5	.11 .02 .04	170 150 100	20 10 10				

Table 5.--Water-level records and chemical [Well number 19 on figure 2. Local well number is SB00506424CCA2.

-								
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FELT BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC COM- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TFMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	32.08 32.38 32.26 32.65 32.58	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	2430 2450 2440 2450 2430	7.1 7.3 7.5 7.4	12.5 13.5 13.5 14.5 14.0	990 970 990 970 990	730 650 680 660 680	240 230 240 230 240
74-10-03 /4-11-11 74-12-05 75-02-06 75-05-14	32.23 32.08 32.13 32.35 32.69	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2420 2400 2600 2600 3100	7.2 7.1 7.1 7.2	13.0 13.5 13.0 12.5 13.5	920 940 1000 1000 990	600 630 690 690 680	210 230 240 240 240
75-08-12 75-12-01 76-03-29 76-06-29 76-09-22	32.83 31.92 32.38 33.00 32.32	75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	3100 2900 2400 2500 2400	7.7 7.3 7.7 6.7 7.3	14.0 13.5 13.0 13.5 13.5	1000 960 1000 1000 1000	700 650 690 680 710	240 230 250 240 250
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	32.07 32.41 33.10 33.18 32.34	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2400 2600 2500 2600 2600	7.4 7.5 7.4 7.4 7.3	13.0 13.5 13.5 13.5 12.5	1000 1000 1000 1100 1100	690 680 710 740 740	240 240 250 250 250
78-03-09 78-06-20	32.44 32.50	78-03-09 78-06-20	2700 2600	7.3 7.3	13.0 13.5	1100 1000	1000 690	250 230
DATE OF WATER-LEVEL MEASUREMENT		DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRIFE DIS- SOLVED (MG/L AS N)	NITRO- CEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	32.08 32.38 32.26 32.65 32.58	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	1.3 1.3 1.3	19 19 19 20 20	1870 1790 1760 1810 1810	4.4 5.7 5.9	.10 .05 .02	4.5 5.7 5.9 5.8 4.2
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	32.23 32.08 32.13 32.35 32.69	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.1 1.3 1.2	20 19 19 20 19	1750 1710 1780 1850 1810	6.0 6.4 5.8 6.5 5.8	.01 .00 .01 .01	6.0 6.4 5.8 6.5 5.8
75-08-12 75-12-01 76-03-29 76-06-29 76-09-22	32.83 31.92 32.38 33.00 32.32	75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	1.3 1.2 1.2	19 19 19 18 19	1870 1850 1820 1940 1950	6.3 5.8 7.1 6.9 7.5	.02 .02 .01 .01	6.3 5.8 7.1 6.9 7.5
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	32.07 32.41 33.10 33.18 32.34	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.4 1.4 1.3	21 20 19 20 21	1930 1920 1980 1920 2000	9.3 7.0 7.2 7.4 8.2	.01 .01 .00 .00	9.3 7.0 7.2 7.4 8.2
78-03-09 78-06-20	32.44 32.50	78-03-09 78-06-20		18 16	1320 1970	8.4 7.7	.00 .01	8.4 7.7

analyses of water from observation wells--Continued

Depth is 73 ft. Interval open to the aquifer is 69 to 73 ft]

MAGNE- S1UM, D1S- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
96 95 95 97 96	220 200 210 220 220	3.0 2.8 2.9 3.1 3.0	6.1 5.4 5.1 5.1 6.6	328 386 380 384 383	0 0 0	269 317 312 315 314	990 900 870 900 900	110 120 110 120 120
95 88 99 98 94	220 220 210 210 230	3.2 3.1 2.9 2.9 3.2	5.8 3.4 4.6 5.3 5.7	381 379 383 385 3 74	 0	313 311 314 316 307	870 820 880 930 890	110 110 110 130 120
100 93 93 99 100	220 230 210 240 230	3.0 3.2 2.9 3.3 3.1	5.7 5.4 5.6 5.5 5.6	382 379 392 394 396	0 0 0 0	313 311 322 323 325	940 950 910 990 1000	130 110 110 120 120
100 99 100 110 110	230 230 240 220 240	3.1 3.2 3.2 2.9 3.2	5.5 5.5 5.5 5.2 5.2	395 395 400 410 410	0 0 0 0	324 324 328 340 340	970 970 1000 950 1000	130 130 130 130 130
110 110	220 240	2.9 3.3	5.8 5.6	70 410	0 0	57 340	1000 1000	140 130
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.05 .18 .11 	.89 .71 .61 	.07 .02 .06 .06	60 130 20 30 20	2200 1100 390 280 200	 			
.03 .04 .04 .00 .01	.37 .42 .25 .36	.03 .03 .05 .03	30 40 10 10 30	150 100 60 60 50	 			
.00 .00 .02 .00	.41 .56 .36 .38	.06 .06 .03 .06 .05	40 30 40 20 10	20 30 20 30 30	3.9 2.7			
.00 .00 .00	.48 .36 .49 .45 .69	.06 .06 .05 .03	30 50 90 60 70	20 20 20 20 20				
.00 .01	.71 1.4	.03 .05	40 40	20 20				

Table 5.--Water-level records and chemical

[Well numb	er 20 o	n figure	2. Lo					.24CCA3.
DATE OF WATER-LEVEL MEASUREMENT	WATEP LEVEL (FEET BELOW LAND SURFACE)	DATE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD-	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	32.33 32.55 32.57 32.90 32.80	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	2450 2540 2600 2630 2670	7.0 7.5 7.5 7.5	13.0 14.0 13.5 14.0 13.5	1000 1000 1100 1100 1100	620 690 730 750 7 90	250 250 260 270 270
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	32.45 32.27 32.43 32.58 32.89	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2600 2550 2800 2700 3100	7.3 7.1 7.2 7.3	13.5 13.0 13.0 13.0 13.5	1100 920 1100 1000	700 580 780 690 670	260 210 270 250 240
75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	33.28 32.15 33.14 33.01 32.57	75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	3300 3300 2450 2400 2500	7.5 7.2 7.7 6.8 7.4	14.0 13.0 13.0 13.5 13.5	1000 1100 1000 1100 1100	670 720 640 680 710	230 270 240 240 250
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	32.29 32.57 33.20 33.48 32.55	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2500 2500 2600 2600 2600	7.5 7.6 7.6 7.5 7.4	12.5 13.5 13.5 13.0 12.5	1100 1100 1100 1100 1100	730 690 770 700 730	250 250 260 250 250
78 - 03 -09 78 - 06 - 20	33.34 32.62 WATER	78-03-09 78-06-20	2650 2600 FLUO-	7.4 7.4 SILICA,	13.5 13.0 SOLIDS, SUM OF	1100 1100 NITRO- GEN,	1000 720 NITRO- GEN,	240 240 NITRO- GEN,
DATE OF WATER-LEVEL MEASUREMENT		DATE OF SAMPLE	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRATE DIS- SOLVED (MG/L AS N)	NITRITE DIS- SOLVED (MG/L AS N)	NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	32.33 32.55 32.57 32.90 32.80	74-04-04 74-05-09 74-06-14 74-07-24 74-08-28	1.8 2.2 2.7 2.0 2.0	21 20 20 21 21	1920 1920 1890 1980 2020	4.5 11 12	.17 .06 .02 	4.7 11 12 13 13
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	32.45 32.27 32.43 32.58 32.89	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.9 1.6 1.8 1.8	21 21 20 21 21	1950 1840 2000 1990 1840	11 13 12 11 8.6	.00 .00 .00 .00	11 13 12 11 8.6
75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	33.28 32.15 33.14 33.01 32.57	75-08-12 75-12-02 76-03-29 76-06-29 76-09-22	1.7 2.0 1.8 1.7	20 19 19 19 20	1900 2120 1910 2000 1990	9.6 9.3 10 11	.01 .01 .00 .00	9.6 9.3 10 11
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	32.29 32.57 33.20 33.48 32.55	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.7 1.8 1.8 1.9	20 21 19 21 21	2030 2000 2000 1940 2060	15 12 12 14 19	.00 .01 .00 .00	15 12 12 14 19
78-03-09 78-06-20	33.34 32.62	78-03-09 78-06-20	1.9 1.9	19 17	1780 1950	15 18	.00 .02	15 18

analyses of water from observation wells--Continued

Depth is 38 ft. Interval open to the aquifer is 34 to 38 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA)	AD- SORP- TION	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
96 98 100 100 110	220 210 220 230 230	3.0 2.9 2.9 3.0 3.0	7.€ 6.8 6.4 7.5 8.1	484 413 400 406 410	0	397 339 328 333 336	960 970 930 980 1000	95 110 100 110 120
100 96 110 100 100	230 2 4 0 230 230 230	3.1 3.4 3.0 3.1 3.1	7.3 4.3 5.9 6.8 6.8	446 414 419 428 412		366 340 344 351 338	950 910 990 990 880	110 100 110 130 120
110 100 100 110 110	230 260 230 250 230	3.1 3.4 3.1 3.4 3.1	7.2 7.2 7.5 7.5 7.5	430 448 450 454 450	0	353 367 369 372 369	940 1100 950 1000 1000	110 100 98 98 96
120 110 120 110 120	230 230 230 210 240	3.0 3.1 3.0 2.8 3.1	7.6 7.6 7.8 7.2 6.8	471 470 460 460 470	Č O	386 385 377 380 390	1000 980 980 950 1000	100 110 100 100 100
120 120	210 230	2.8 3.0	8.0 7.7	120 4 50		98 370	960 920	100 110
AINCMMC	MONÍA + ORGANIC DIS.		IRON, DIS- SOLVED (UG/L AS FE)	SOLVED	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, DMMONIA DIS- SOLVED (MG/L	GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .12 .05	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .04 .01 .06 .07	DIS- SOLVED (UG/L AS FE) 50 50 20 20	NESE, DIS- SOLVED (UG/L AS MN) 4900 210 40 10	ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .12 .05 .03	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 1.1 .56 .75 .46	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .04 .01 .06 .07 .12	DIS- SOLVED (UG/L AS FE) 50 50 20 40 50 30 10	NESE, DIS- SOLVED (UG/L AS MN) 4900 210 40 10 30 30 0 10 20	ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .12 .05 .03 1.9 .01 .04 .01 .01 .00 .00 .02 .00	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 1.1 .56 .7546 .30 .48 .37 .46 .40 .64 .91 .47 .26	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .04 .01 .06 .07 .12 .05 .04 .07 .07 .08 .06 .08	DIS- SOLVED (UG/L AS FE) 50 50 20 20 40 50 30 10 0 30 10 20	NESE, DIS- SOLVED (UG/L AS MN) 4900 210 40 10 30 30 0 10 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ORGANIC DIS- SOLVED (MG/L AS C)			

Table 5.--Water-level records and chemical [Well number 23 on figure 2. Local well number is SB00506425ACB1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03	34.14	74-04-03	2730	6.5	11.5	1100	600	290
74-05-08	34.18	74-05-08	2470	6.9	13.5	920	520	230
74-06-13	34.44	74-06-13	2340	7.1	13.5	830	500	210
74-07-23	34.69	74-07-23	2470	7.3	15.0	830	520	210
74-08-27	34.55	74-08-27	2700	7.2	14.5	920	600	220
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.58 33.50 33.66 33.98 34.52	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2920 3000 3200 3100 3400	7.1 6.9 7.0 7.2	13.5 12.5 12.0 12.0 13.5	960 1000 1100 970 940	600 660 740 640 600	230 250 260 230 230
75-08-11	34.16	75-08-11	2900	7.2	13.5	800	520	200
75-12-01	33.69	75-12-01	3400	7.4	12.5	1000	670	250
76-03-29	34.12	76-03-29	2600	7.7	12.0	920	580	220
76-06-29	34.76	76-06-29	2400	6.7	14.0	760	470	190
76-09-22	34.35	76-09-22	2200	7.2	13.5	790	510	200
76-12-08	33.83	76-12-08	2800	7.3	13.0	1100	710	260
77-03-08	34.27	77-03-08	2700	7.6	13.0	940	620	230
77-06-15	34.88	77-06-15	2400	7.3	14.0	840	540	210
77-09-13	34.94	77-09-13	2300	7.5	13.0	850	540	210
77-12-06	34.09	77-12-06	2200	7.3	11.5	840	540	210
78-03-09	34.32	78-03-09	3500	7.2	12.5	1300	900	300
78-06-20	34.37	78-06-20	240 0	7.0	13.5	860	560	210
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	34.14 34.18 34.44 34.69 34.55	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.0 1.2 1.1 1.3 2.2	22 21 19 19 24	2010 1820 1700 1790 1920	.44 1.7 2.2 2.9	.66 .03 .02 	1.1 1.7 2.2 3.8 2.9
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.58 33.50 33.66 33.98 34.52	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.4 1.2 1.4 1.4	20 20 19 20 16	2220 2260 2280 1860 2050	4.8 5.9 6.1 3.4 .48	.30 .25 .35 .03	5.1 6.1 6.4 3.4 .48
75-08-11	34.16	75-08-11	1.1	17	1740	3.7	.08	3.8
75-12-01	33.69	75-12-01	1.3	16	2320	4.2	.01	4.2
76-03-29	34.12	76-03-29	1.2	15	1920	1.9	.01	1.9
76-06-29	34.76	76-06-29	1.3	16	1720	4.0	.05	4.0
76-09-22	34.35	76-09-22	1.3	16	1750	4.2	.02	4.2
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	33.83 34.27 34.88 34.94 34.09	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.3 1.3 1.3 1.2 1.3	19 18 16 17 16	2280 2050 1740 1860 1770	11 5.3 3.7 3.7 2.1	.01 .00 .01 .01	11 5.3 3.7 3.7 2.1
78-03-09	34.32	78-03 -0 9	1.5	19	2760	8.6	.00	8.6
78-06-20	34.37	78-06-20	1.1	13	1760	1.9	.03	1.9

analyses of water from observation wells--Continued

Depth is 99 ft. Interval open to the aquifer is 94 to 98 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	
100 83 73 75 90	250 250 2 4 0 260 290	3.2 3.6 3.6 3.9 4.2	6.8 5.0 4.8 4.3 7.1	656 481 393 380 388	0 0 0 	538 395 322 312 318	910 900 880 940 1000	94 77 66 77 82	
93 94 110 97 88	340 350 340 230 320	4.8 4.8 4.5 3.2 4.6	6.8 4.0 5.4 6.7 5.1	435 434 441 410 412		357 356 362 336 338	1200 1200 1200 940 1100	91 95 95 120 81	
74 94 91 70 71	260 340 300 270 250	4.0 4.7 4.3 4.3 3.9	5.9 6.8 6.6 5.5 5.6	351 416 414 353 347	0 0 0 0	288 341 340 290 285	920 1300 1000 910 950	69 85 77 70 67	
99 88 76 79 77	340 300 260 270 250	4.6 4.3 3.9 4.0 3.8	6.5 6.0 5.3 5.2 5.7	428 390 360 380 370	0 0 0 0	351 320 300 310 300	1200 1100 910 1000 950	97 92 68 77 71	
130 82	410 260	5.0 3.9	8.0 6.0	470 370	0 0	390 300	1500 920	120 78	
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)				
GEN, AMMONIA DIS- SOLVED (MG/L	GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L				
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .17 .17 .34	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .64 .71 .81	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .00 .04 .04	DIS- SOLVED (UG/L AS FE) 3300 5300 1500 230	NESE, DIS- SOLVED (UG/L AS MN) 4900 2700 1500 950	ORGANIC DIS- SOLVED (MG/L				
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .17 .17 .34 .15 .08 .08 .01 .02 .00 .08	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .64 .71 .81 .44 .57 .71 .49 .59	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .00 .04 .05 .02 .01	DIS- SOL VED (UG/L AS FE) 3300 5300 1500 230 310 60 40 30 10	NESE, DIS- SOLVED (UG/L AS MN) 4900 2700 1500 950 810 490 300 150 10	ORGANIC DIS- SOLVED (MG/L AS C)				
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .17 .17 .34 .15 .14 .08 .08 .01 .02 .00	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .64 .71 .8144 .57 .71 .49 .59 .21 .21 .94 .30 .25	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .00 .04 .05 .02 .01 .02 .01 .04 .02	DIS- SOLVED (UG/L AS FE) 3300 5300 1500 230 310 60 40 30 10 60 20 130 230 100	NESE, DIS- SOLVED (UG/L AS MN) 4900 2700 1500 950 810 490 300 150 10 160 110 50 50 70	ORGANIC DIS- SOLVED (MG/L AS C)				

Table 5.--Water-level records and chemical [Well number 24 on figure 2. Local well number is SB00506425ACB2.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACC3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	33.42 33.49 33.82 33.95 33.70	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	2530 2770 2560 2560 2500	7.2 7.3 7.4 7.3 7.1	11.5 12.5 13.0 13.5 12.5	1100 1000 940 900 850	700 650 590 540 500	260 250 230 220 200
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.08 33.08 33.16 33.52 34.18	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2460 2500 2700 2700 3100	7.2 7.1 7.1 7.2	12.5 12.0 12.0 11.5 12.5	860 8 4 0 860 870 870	510 490 510 520 530	210 210 210 210 230
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	34.43 33.30 33.70 34.42 34.08	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	3000 3000 2675 2900 2800	7.3 7.4 7.4 6.6 7.1	12.5 11.5 12.0 13.0 13.5	900 910 1000 1000 1100	550 560 660 680 730	210 220 250 250 270
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	33.39 33.90 34.67 34.52 33.84	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2900 3000 3000 3000 3000	7.3 7.4 7.4 7.5 7.2	12.0 12.5 13.0 13.0 12.0	1200 1000 980 1100 1100	780 660 610 680 660	280 250 240 260 240
78-03-09 78-06-20	33.84 34.11	78-03-09 78-06-20	3000 3000	7.2 7.3	12.5 13.0	1100 1100	710 680	260 250
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	33.42 33.49 33.82 33.95 33.70	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.5 1.5 1.4 1.6 1.3	22 23 23 24 19	2250 2100 1960 1890 1780	7.3 7.7 7.1 4.2	.04 .02 .02 	7.3 7.7 7.1 7.1 4.2
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.08 33.08 33.16 33.52 34.18	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.5 1.5 1.6 1.5	24 23 23 23 23 23	1830 1820 1820 1890 1870	6.5 6.7 7.3 9.9	.01 .02 .00 .00	6.7 6.5 6.7 7.3 9.9
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	34.43 33.30 33.70 34.42 34.08	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	1.4 1.6 1.6 1.6	22 22 22 21 22	1830 1950 2130 2250 2390	6.8 7.0 8.5 8.8 9.4	.01 .01 .00 .00	6.8 7.0 8.5 8.8 9.4
76-12-08								
77-03-08 77-06-15 77-09-13 77-12-06	33.39 33.90 34.67 34.52 33.84	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.6 1.7 1.7 1.8 1.8	21 23 21 23 22	2540 2320 2290 2340 2350	12 10 8.6 10	.00 .00 .00 .00	12 10 8.6 10

analyses of water from observation wells--Continued

Depth is 64 ft. Interval open to the aquifer is 60 to 64 ft]

MAGNE- SIUM, DIS- SOLVED 'MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
100 94 89 84 85	320 280 280 280 280 260	4.3 3.8 4.0 4.1 3.9	5.9 6.0 5.5 4.2 6.9	439 436 429 428 429	0 0 0	360 358 352 351 352	1200 1100 1000 940 890	96 100 92 95 91
81 76 82 85 72	260 270 270 290 270	3.9 4.1 4.0 4.3 4.0	6.3 4.4 5.4 6.1 5.2	426 426 430 432 421	 0	349 349 353 354 345	920 910 900 930 920	89 83 90 98 94
92 87 96 100 100	270 290 300 320 330	3.9 4.2 4.1 4.3 4.4	6.2 6.5 7.1 7.0 7.3	426 425 435 434 435	0 0 0 0	349 349 357 356 357	900 1000 1100 1200 1300	90 85 97 97 98
110 98 93 100 110	340 360 350 360 360	4.4 4.9 4.9 4.8 4.8	7.5 6.6 6.7 6.5 6.9	453 454 460 470 480	0 0 0 0	372 372 380 390 390	1400 1200 1200 1200 1200	100 110 110 110 120
110 110	350 380	4.6 5.0	7.4 8.2	480 480	0 0	390 390	1200 1200	120 120
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.08 .12 .05 	.71 .62 .72 	.03 .02 .05 .06	160 70 20 50 20	150 30 0 0	 			
.02 .01 .01 .01	.35 .60 .33 .48	.03 .04 .04 .03 .04	60 20 40 10 40	0 0 10 20 5	 			
.00 .09 .02 .00	.30 .97 .49 .23	.04 .05 .03 .07	10 30 10 10 30	0 10 0 0	3.9 5.3			
.00 .01 .04 .01	1.1 .75 .30 .54	.02 .04 .05 .02	80 50 90 180 200	10 10 10 10 20				
.00 .01	.62 1.7	.02 .07	100 230	20 5				

Table 5.--Water-level records and chemical [Well number 25 on figure 2. Local well number is SB00506425ACB3.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	33.61 33.65 34.05 34.17 33.91	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	3090 3000 3150 3140 3190	7.1 7.3 7.4 7.3	11.5 13.0 12.5 13.0 12.0	1300 1200 1300 1300 1500	910 870 1000 1000 1100	320 300 330 330 360
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.26 33.24 33.33 33.69 34.36	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	3210 3400 3200 3600 4200	7.2 7.0 7.0 6.8	12.0 11.5 12.0 11.5 12.5	1300 1500 1600 1500 1400	1000 1100 1200 1100 1000	370 390 400 380 360
75-08-11 76-06-29 76-09-22 76-12-08 77-03-08	32.55 34.56 34.26 33.56 34.05	75-08-11 76-06-29 76-09-22 76-12-08 77-03-08	4000 2900 2700 2800 2900	7.0 6.1 6.9 6.7 7.2	13.5 12.5 13.5 12.0 12.5	1400 1100 1100 1100 1100	990 730 770 730 740	360 300 310 310 290
77-06-15 77-09-13 77-12-06 78-03-09 78-06-20	34.80 34.70 33.74 34.01 34.25	77-06-15 77-09-13 77-12-06 78-03-09 78-06-20	3000 2900 3000 3000 3000	6.9 7.2 6.9 7.0 7.1	12.5 13.0 12.0 12.5 13.0	1100 1200 1100 1100 1200	750 820 760 1000 810	280 300 280 270 300
DATE OF WATER-LEVEL MEASUREMENT		DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	33.61 33.65 34.05 34.17 33.91	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	.9 2.6 1.6	22 23 23 23 23 23	2410 2290 2550 2430 2570	28 13 35	.22 .08 .05 	28 13 35 35 25
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	33.26 33.24 33.33 33.69 34.36	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.5 .9 1.1	23 22 18 26 25	2560 2680 2690 2660 2530	50 .42 38 35	.01 .01 .00 .00	37 50 .42 38 35
75-08-11 76-06-29 76-09-22 76-12-08 77-03-08	32.55 34.56 34.26 33.56 34.05	75-08-11 76-06-29 76-09-22 76-12-08 77-03-08	1.0 .7	27 29 27 31 31	2470 2260 2250 2250 2120	31 22 22 30 23	.01 .00 .01 .01	31 22 22 22 30 23
77-06-15 77-09-13 77-12-06 78-03-09 78-06-20	34.80 34.70 33.74 34.01 34.25	77-06-15 77-09-13 77-12-06 78-03-09 78-06-20	.9 1.2 1.3	27 30 26 24 22	2180 2150 2310 2080 2330	28 16 26 22 22	.01 .00 .01 .00	28 16 26 22 22

analyses of water from observation wells--Continued

Depth is 46 ft. Interval open to the aquifer is 42 to 46 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
110 110 120 120 140	290 290 290 270 270	3.6 3.6 3.5 3.2 3.1	5.9 5.5 5.6 3.6 7.1	421 401 381 385 417	0 0 0 	345 329 313 316 342	1200 1200 1300 1200 1300	130 110 140 140 150
100 130 150 140 130	270 250 240 260 260	3.2 2.8 2.6 2.9 3.0	6.0 3.6 5.1 6.0 6.3	404 459 478 465 483	 0	331 376 392 381 396	1300 1300 1300 1300 1200	130 140 150 150 150
120 89 89 91 84	250 270 280 280 280	2.9 3.5 3.6 3.6 3.7	6.2 5.9 5.7 5.9 5.7	491 475 448 508 403	0 0 0 0	403 390 367 417 331	1200 1100 1100 1000 970	130 130 120 150 160
91 98 100 100	290 270 320 300 330	3.9 3.5 4.2 4.0 4.2	5.8 5.6 5.9 6.2 6.0	400 400 430 70 430	0 0 0 0	328 330 350 57 350	1000 1000 1100 1100 1100	160 180 150 150 160
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
.06 .20 .07 	.75 .62 .83 	.03 .04 .06 .07	120 40 20 50 20	260 40 0 0 20	 			
.05 .02 .03 .01	.26 .37 .38 .66	.05 .04 .03 .03	50 20 10 10 30	30 0 10 10	 			
.01 .00 .00 .11 .01	.32 .42 .59 .53	.03 .07 .06 .02 .05	10 0 10 30 30	10 0 10 10	9.0 23 			
.00 .01 .01 .01	.03 .67 .70 1.0	.04 .01 .01 .01	20 30 40 10 0	10 0 20 0 10	 			

Table 5.--Water-level records and chemical [Well number 26 on figure 2. Local well number is SB00506425ADD1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	31.04 31.20 31.50 32.40 32.20	74-04-04 74-05-09 74-06-14 74-07-23 74-08-27	4330 4330 4310 4510 4550	7.2 7.3 7.3 7.4	12.5 13.0 13.5 14.0 13.5	1500 1600 1500 1600 1600	1100 1200 1100 1200 1200	340 340 340 340 350
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	30.60 30.69 30.90 31.09 31.75	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	4490 4500 5700 5000 6500	7.2 7.1 7.0 7.3	13.5 12.5 13.0 13.0 13.5	1500 1500 1500 1500 1500	1100 1100 1100 1100 1100	330 320 330 320 330
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	32.32 30.74 31.15 32.75 31.24	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	3700 5500 4200 4400 4000	7.6 7.4 7.4 6.6 7.1	14.0 12.5 12.0 13.5 13.0	1500 1400 1400 1400 1400	1100 1100 1100 1000 1000	310 310 330 310 320
76-12-08 77-03-08 77-06-29 77-09-13 77-12-06	30.70 31.20 32.58 31.57 30.33	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	40 0 0 45 0 0 50 0 0 50 0 0 40 0 0	7.3 7.6 7.5 7.3 7.2	12.5 12.5 13.5 13.0 12.0	1400 1400 1500 1400 1400	1100 1100 1100 1000 950	310 310 320 320 300
78-03-09 78-06-20 DATE OF WATER-LEVEL MEASUREMENT	31.06 31.85 WATER LEVEL (FEET BELOW LAND SURFACE)	78-03-09 78-06-20 DATE OF SAMPLE	4000 4000 FLUO- RIDE, DIS- SOLVED (MG/L AS F)	7.2 7.1 SILICA, DIS- SOLVED (MG/L AS SIO2)	13.0 13.5 SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	1300 1500 NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	1300 1100 NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	290 300 NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	31.04 31.20 31.50 32.40 32.20	74-04-04 74-05-09 74-06-14 74-07-23 74-08-27	1.8 2.0 2.5 1.6 1.7	20 20 20 21 20	3560 3510 3460 3660 3790	5.1 7.3 .07 	.06 .04 .01 	5.2 7.3 .08 8.3
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	30.60 30.69 30.90 31.09 31.75	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.8 1.5 1.7 1.6 1.8	20 20 19 20 19	3520 3390 3520 3530 3520	8.6 8.5 5.9 7.4 8.1	.01 .00 .00 .00	8.6 8.5 5.9 7.4 8.1
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	32.32 30.74 31.15 32.75 31.24	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	1.7 1.8 1.8 1.8	20 19 19 18 19	3640 3610 3420 3490 3500	8.4 7.5 5.0 7.6 8.2	.00 .01 .00 .00	8.4 7.5 5.0 7.6 8.2
76-12-08 77-03-08 77-06-29 77-09-13 77-12-06	30.70 31.20 32.58 31.57 30.33	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.7 1.8 1.8	18 21 18 20 19	3380 3400 3380 3370 3170	4.9 4.6 5.6 2.5	.00 .00 .00	6.5 4.9 4.6 5.6 2.5
78-03-09 78-06-20	31.06 31.85	78-03-09 78-06-20		17 16	2880 3 130	2.3 3.6	.01 .03	2.3 3.6

analyses of water from observation wells--Continued

Depth is 90 ft. Interval open to the aquifer is 60 to 90 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
160 170 160 170 170	600 540 550 600	6.7 6.0 6.2 6.6 6.6	10 9.3 9.5 7.2	454 445 466 481 493	0 0 0 	372 365 382 395 404	2000 2000 2000 2100 2200	180 180 150 150 150
160 160 160 160 160	580 580 590 580 580	6.6 6.6 6.7 6.6 6.6	9.8 5.2 7.7 9.5 7.9	484 465 462 464 466	 0	397 381 379 381 382	2000 1900 2000 2000 2000	140 140 160 180 160
170 160 150 160 150	600 600 560 580 590	6.8 6.9 6.4 6.7 6.8	10 9.9 10 9.4 9.6	480 463 473 469 467	0 0 0 0	394 380 388 385 383	2100 2100 1900 2000 2000	150 150 190 150 140
160 160 170 150 150	570 550 540 540 530	6.6 6.3 6.1 6.2 6.2	8.8 8.5 8.6 8.6 8.5	458 453 450 470 510	0 0 0 0	376 372 369 390 420	1900 1900 1900 1900 1700	160 200 180 170 200
150 170 NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	480 500 NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	5.7 5.7 PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	9.3 8.9 IRON, DIS- SOLVED (UG/L AS FE)	43 470 MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	35 390	1700 1600	200 290
.05 .08 .06 	.71 .64 .86 	.03 .04 .06 .07	280 30 10 20 20	130 10 0 0	 			
.05 .03 .05 .01	.66 .75 .68 .70	.05 .04 .05 .03	40 40 20 30 50	10 0 10 0 10	 			
.00 .02 .02 .00	.67 .96 .88 .46	.06 .05 .02 .06 .03	10 50 20 20 20	0 10 0 0 10	26 4.5			
.00 .00 .00	1.6 .47 .70 .36	.04 .05 .04 .02 .02	70 90 260 60 70	10 20 20 20 10	 			
.00 .01	.73 .78	.03 .03	50 50	20 10				

Table 5.--Water-level records and chemical [Well number 28 on figure 2. Local well number is SB00506425BBD1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	35.86 35.99 35.86 36.39 36.32	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.3 1.4 1.2 1.5 1.5	18 19 22 19 20	1360 1420 1350 1380 1450	3.7 4.4 5.0	.01 .00 .00	3.7 4.4 5.0 4.5 5.0
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	35.82 35.66 35.73 36.09 36.38	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	1.3 1.2 1.4 1.3 1.7	20 19 18 20 23	1440 1380 1390 1440 1600	4.5 4.4 4.8 7.8	.01 .00 .00 .00	5.0 4.5 4.4 4.8 7.8
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	36.68 35.75 36.26 37.20 36.38	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	1.3 1.3 1.4 1.4	18 15 18 17 17	1430 1430 1400 1420 1510	3.9 3.5 4.2 4.2 4.6	.01 .01 .00 .00	3.9 3.5 4.2 4.2 4.6
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	36.03 36.36 37.00 37.18 36.11	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	1.3 1.5 1.7 1.4 1.4	17 19 22 19 18	1500 1500 1490 1520 1530	4.2 3.8 2.8 3.7 4.2	.01 .01 .01 .00	4.2 3.8 2.8 3.7 4.2
78-03-09 78-06-20	36.49 36.71	78-03-09 78-06-20	1.4 1.2	17 15	1530 1520	2.9 3.8	.01 .02	2.9 3.8
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
WATER-LEVEL	LEVEL (FEET Below Land	0F	CIFIC CON- DUCT- ANCE (MICRO-		ATURE	NESS (MG/L AS	NESS, NONCAR- BONATE (MG/L	DIS- SOLVED (MG/L
WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23	LEVEL (FEET BELOW LAND SURFACE) 35.86 35.99 35.86 36.97	OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23	CIFIC CON- DUCT- ANCE (MICRO- MHOS) 1950 1960 1920 1980	(UNITS) 7.4 7.4 7.5 7.3	ATURE (DEG C) 12.5 14.0 14.0 14.5	NESS (MG/L AS CACO3) 750 750 750 750	NESS, NONCAR- BONATE (MG/L CACO3) 500 490 500 500	DIS- SOL VED (MG/L AS CA) 180 180 180
WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	LEVEL (FEET BELOW LAND SURFACE) 35.86 35.99 35.86 36.97 36.32 35.66 35.73 36.09	OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	CIFIC CON- DUCT- ANCE (MICRO- MHOS) 1950 1960 1920 1980 2020 2000 1950 2100 2100	(UNITS) 7.4 7.4 7.5 7.3 7.3 7.2 7.0	ATURE (DEG C) 12.5 14.0 14.0 14.5 14.0 13.5 13.0 13.0 13.0	NESS (MG/L AS CACO3) 750 750 750 800 750 740 770 750	NESS, NONCAR- BONATE (MG/L CACO3) 500 500 500 520 490 480 510 480	DIS- SOLVED (MG/L AS CA) 180 180 180 190 180 190 190
WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	LEVEL (FEET BELOW LAND SURFACE) 35.86 35.99 35.86 36.97 36.32 35.66 35.73 36.09 36.38 36.68 35.75 36.26 37.20	OF SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-11 75-08-11 76-03-29 76-06-29	CIFIC CON- DUCT- ANCE (MICRO- MHOS) 1950 1960 1920 1980 2020 2000 1950 2100 2700 2400 2300 2000 2000	(UNITS) 7.4 7.4 7.5 7.3 7.3 7.2 7.0 7.0 7.3 7.5 6.7	ATURE (DEG C) 12.5 14.0 14.5 14.0 13.5 13.0 13.0 13.0 13.0 13.0 13.0 14.0	NESS (MG/L AS CACO3) 750 750 750 800 750 750 810 750 750 750 750	NESS, NONCAR- BONATE (MG/L CACO3) 500 500 500 520 490 480 510 480 500 500 490 490	DIS- SOLVED (MG/L AS CA) 180 180 180 190 190 190 180 210 180 190 180

analyses of water from observation wells--Continued

Depth is 103 ft. Interval open to the aquifer is 99 to 103 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
72 73 72 7 4 79	160 160 160 170 180	2.6 2.5 2.6 2.7 2.8	4.8 5.4 4.9 3.3 6.3	302 319 304 311 336	0 0 0	248 262 249 255 276	660 700 640 660 690	97 100 93 98 100
7 4 65 72 72 70	170 180 170 180 210	2.7 2.9 2.7 2.9 3.2	5.9 3.6 4.9 5.6 6.0	323 314 317 329 406	 0	265 258 260 270 333	710 650 660 700 750	96 93 97 100 90
72 73 72 73 73	170 180 170 180 180	2.7 2.8 2.7 2.9 2.8	5.5 5.8 5.4 5.2 5.2	297 341 317 319 281	0 0 0 0	244 280 260 262 230	710 680 670 690 760	110 100 110 100 120
76 77 81 80 79	180 190 200 190 190	2.8 2.9 3.1 2.9 2.9	5.3 5.3 5.7 5.1 5.3	336 347 650 400 360	0 0 0 0	276 285 533 330 300	730 700 560 690 720	120 120 98 120 120
87 79	190 190	2.8 2.9	5.2 5.3	420 350	0	340 290	680 710	120 130
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIO DIS. (MG/L AS N)	<pre>- PHORUS, + ORTHO,</pre>	IRON, DIS- SOLVED (UG/L AS FE)	(UG/L	ORGANIĆ DIS- SOLVED (MG/L			
.03 .02 .03	.24 .42 .49 	.02 .00 .01 .06 .04	40 0 20 30 20	20 20 20 0 20				
.03 .04 .04 .00	.55 .41 .29 .35	.02 .01 .03 .04 .06	30 30 20 20 20	10 0 10 20 5				
.00 .02 .02 .00	.25 .65 .38 .16	.02 .03 .01 .03 .03	30 150 10 40 30	0 0 0 0 10	35 14			
.00 .01 .00 .00	.38 .25 .33 .42 .16	.01 .04 .04 .01	20 60 100 120 100	0 10 20 10 20				
.00 .01	.62 .49	.01 .02	180 80	10 10				

Table 5.--Water-level records and chemical [Well number 29 on figure 2. Local well number is SB00506425BBD2.

LMC11 HUM	061 23 01	1 Tigute		July Wel	i iiumbei	13 35	00000120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	35.46 35.56 35.83 36.07 35.81	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	2130 2150 2200 2150 2130	7.2 7.4 7.4 7.3	12.5 14.0 14.0 14.5 13.5	850 850 860 850 780	520 520 530 520 450	200 200 200 200 200 190
74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	35.30 35.26 35.31 38.55 36.56	74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	2110 2150 2300 2400 2700	7.2 7.1 7.1 7.3	13.5 12.5 13.0 14.0 14.5	820 810 850 760 820	480 470 500 510 500	190 200 200 180 190
75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	35.52 36.04 36.60 36.26 35.78	75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	2300 2000 2100 2000 1900	7.1 7.5 6.6 7.0 7.3	13.0 13.0 13.0 13.5 13.0	750 750 780 800 770	370 430 340 230 350	180 180 180 190 180
77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	36.21 36.85 37.04 35.79 36.35	77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	2100 2200 2200 2200 2250	7.5 6.7 7.3 7.2 7.2	13.5 13.5 13.0 12.5 13.0	770 850 900 900 920	410 270 220 180 390	180 200 210 210 220
78-06-20	36,40	78-06-20	2400	7.2	14.0	1100	360	260
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	35.46 35.56 35.83 36.07 35.81	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	1.7 2.0 2.1 1.7	23 23 28 24 23	1500 1590 1550 1600 1510	7.2 7.6 7.0	.02 .01 .01 .01	7.2 7.6 7.0 15 7.6
74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	35.30 35.26 35.31 38.55 36.56	74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	1.6 1.4 1.6 1.3	24 23 23 18 23	1550 1500 1540 1400 1540	8.5 7.8 4.1 7.2	.01 .00 .00 .00	7.9 8.5 7.8 4.1 7.2
75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	35.52 36.04 36.60 36.26 35.78	75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	1.2 1.9 1.7 1.9	13 22 22 22 23 21	1470 1460 1530 1470 1480	3.8 7.7 5.2 3.4 9.0	.00 .00 .01 .02	3.8 7.7 5.2 3.4 9.0
77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	36.21 36.85 37.04 35.79 36.35	77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	1.9 1.7 1.9 1.9 2.0	23 23 25 25 21	1460 1480 1550 1530 1500	6.3 2.2 .05 .22 .75	.01 .00 .00 .00	6.3 2.2 .05 .22 .76
78-06-20	36.40	78-06-20	2.0	20	1640	.18	•02	.20

analyses of water from observation wells--Continued

Depth is 68 ft. Interval open to the aquifer is 64 to 68 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
85 85 87 86 75	180 180 180 190 190	2.7 2.7 2.7 2.8 3.0	5.9 6.3 6.0 6.0 7.6	405 398 395 401 406	0 0 0 	332 326 324 329 333	690 770 730 730 690	86 95 89 94 96
83 76 84 75 83	190 200 190 170 190	2.9 3.1 2.8 2.7 2.9	7.0 4.1 5.9 4.7 6.4	410 414 421 303 387	 0 0	336 340 345 249 317	730 670 710 670 740	89 81 86 110 86
73 74 81 80 77	200 190 200 200 190	3.2 3.0 3.1 3.1 3.0	6.2 5.9 6.0 6.0 5.9	468 392 538 701 509	0 0 0 0	384 322 441 575 417	660 670 660 520 620	85 86 89 91 92
78 85 92 92 89	190 200 210 200 190	3.0 3.0 3.0 2.9 2.7	5.9 5.8 6.2 5.6	439 710 830 880 640	0 0 0 0	360 580 680 720 530	640 510 500 470 560	100 93 100 94 96
100 NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	230 NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	3.1 PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	700	490	110
.07 .08 .01 	.35 .52 .58 	.03 .02 .02 1.9	80 20 10 20 20	10 10 20 0 20				
.04 .04 .07 .00	.38 .58 .30 .16	.04 .03 .04 .02	30 10 10 30 10	10 0 10 10 0				
.05 .02 .00 .00	.67 .46 .21 .32 .85	.03 .02 .06 .06	90 10 70 60 70	0 0 0 10 10	3.0 3.2			
.00 .00 .00 .01	.46 .87 .31 .14	.05 .07 .03 .03	50 90 200 170 70	0 10 10 10				
.01	.42	.03	620	20				

Table 5.--Water-level records and chemical [Well number 30 on figure 2. Local well number is SB00506425BBD3.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	35.47 35.50 35.83 36.04 35.77	74-04-03 74-05-08 74-06-13 74-07-23 74-08-27	2540 2570 2530 2470 2550	7.4 7.5 7.5 7.4 7.2	12.0 13.0 13.0 13.5 12.5	950 930 890 830 800	690 650 610 560 540	200 190 190 180 190
74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	35.25 36.34 35.28 37.54 37.39	74-10-03 74-11-11 74-12-05 75-05-14 75-08-11	2570 2500 2900 3500 3200	7.3 7.0 7.1 7.1	12.5 12.0 12.5 13.0 13.0	910 900 940 940 920	610 620 670 570 600	220 220 220 220 210
75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	35.47 35.98 36.58 36.22 36.38	75-12-01 76-03-29 76-06-29 76-09-22 76-12-08	3000 2425 2600 2400 2400	7.1 7.3 6.6 6.9 7.2	13.0 13.0 13.5 13.5 12.5	910 930 900 890 910	630 630 590 580 600	210 210 180 190 200
77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	36.15 37.28 37.40 35.95 36.28	77-03-08 77-06-15 77-09-13 77-12-06 78-03-09	2500 2450 2400 2400 2400	7.4 7.3 7.3 7.4 7.1	13.5 13.5 13.0 12.0 13.0	920 900 980 940 990	590 570 600 530 500	210 210 240 230 240
78-06-20	36.40	78-06-20	2400	6.9	14.0	920	350	220
DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
DATE OF WATER-LEVEL	LEVEL (FEET BELOW LAND	0F	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRATE DIS- SOLVED (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23	LEVEL (FEET BELOW LAND SURFACE) 35.47 35.50 35.83 36.04	0F SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23	RIDE, DIS- SOLVED (MG/L AS F) 2.1 2.3 2.6 2.1	DIS- SOLVED (MG/L AS SIO2) 24 25 29 25	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1810 1900 1830 1810	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.5 8.2	GEN, NITRITE DIS- SOLVED (MG/L AS N) .04 .01 .00	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.5 8.2 10 6.6
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14	LEVEL (FEET BELOW LAND SURFACE) 35.47 35.50 35.83 36.04 35.77 35.25 36.34 35.28 37.54	0F SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14	RIDE, DIS- SOLVED (MG/L AS F) 2.1 2.3 2.6 2.1 .3 2.0 1.9 2.0 2.0	DIS- SOLVED (MG/L AS SIO2) 24 25 29 25 7.2 25 25 24 26	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1810 1900 1830 1810 1720 1930 1790 1940 2030	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.5 8.2 10 .17	GEN, NITRITE DIS- SOLVED (MG/L AS N) .04 .01 .00 .01	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.5 8.2 10 6.6 .18 8.3 8.6 9.0 8.4
DATE OF WATER-LEVEL MEASUREMENT 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	SURFACE) 35.47 35.50 35.83 36.04 35.77 35.25 36.34 35.28 37.54 37.39 35.47 35.98 36.58 36.58	0F SAMPLE 74-04-03 74-05-08 74-06-13 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	RIDE, DIS- SOLVED (MG/L AS F) 2.1 2.3 2.6 2.1 .3 2.0 1.9 2.0 1.6 2.4 2.5 2.5 2.3	DIS- SOLVED (MG/L AS SIO2) 24 25 29 25 7.2 25 25 24 26 29 27 27 27 27	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 1810 1900 1830 1810 1720 1930 1790 1940 2030 1950 1920 1940 1870 1860	GEN, NITRATE DIS- SOLVED (MG/L AS N) 7.5 8.2 10 .17 8.6 9.0 8.4 7.5 7.7 8.4 8.9 9.3	GEN, NITRITE DIS- SOLVED (MG/L AS N) .04 .01 .00 .00 .00 .00 .02	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 7.5 8.2 10 6.6 .18 8.3 8.6 9.0 8.4 7.5 7.7 8.4 8.9 9.3

analyses of water from observation wells--Continued

Depth is 44 ft. Interval open to the aquifer is 40 to 44 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
110 110 100 93 80	210 250 260 270 260	3.0 3.6 3.8 4.1 4.0	7.2 7.8 7.2 7.3 8.7	318 333 337 331 319	0 0 0 	261 273 276 272 262	970 1000 940 940 920	100 110 93 95 98
87 85 96 96 97	260 250 280 320 280	3.8 3.6 4.0 4.5 4.0	8.2 4.9 6.8 6.9 8.1	369 341 330 457 399	 0 0	303 280 271 375 327	1000 900 1000 1000 1000	110 100 110 100 97
94 99 110 100 100	280 270 290 250 240	4.0 3.8 4.2 3.7 3.5	7.9 7.8 7.5 7.9 7.7	342 372 383 373 385	0 0 0 0	281 305 314 306 316	1000 1000 930 960 970	95 100 94 93 94
96 90 92 88 94	250 230 230 230 230 220	3.6 3.3 3.2 3.3 3.0	7.2 6.8 6.3 6.3 5.6	396 400 460 490 590	0 0 0 0	325 328 380 400 480	900 890 890 850 800	95 86 88 80 87
90	230	3.3	5.8	690	0	570	700	86
NITRO-	NITRO-	PHOS-						
GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
AMMONÍA DIS- SOLVED (MG/L	MONÍA + ORGANIC DIS. (MG/L	ORTHO, DIS- SOLVED (MG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L			
AMMONÍA DIS- SOLVED (MG/L AS N) .08 .06 .01	MONIA + ORGANIC DIS. (MG/L AS N) .37 .43 .63	ORTHO, DIS- SOLVED (MG/L AS P) .03 .02 .02 .08	DIS- SOLVED (UG/L AS FE) 140 50 50 30	NESE, DIS- SOLVED (UG/L AS MN) 40 10 0	ORGANIC DIS- SOLVED (MG/L			
AMMONÍA DIS- SOLVED (MG/L AS N) .08 .06 .01 .03 .02 .04 .04	MONIA + ORGANIC DIS. (MG/L AS N) .37 .43 .63 .44 .33 .56 .28 .28	ORTHO, DIS- SOLVED (MG/L AS P) .03 .02 .02 .08 .00 .03 .03 .04	DIS- SOLVED (UG/L AS FE) 140 50 50 30 20 50 20	NESE, DIS- SOLVED (UG/L AS MN) 40 10 0 20 0 10 10	ORGANIC DIS- SOLVED (MG/L AS C)			
AMMONÍA DIS- SOLVED (MG/L AS N) .08 .06 .01 .03 .02 .04 .04 .00 .00	MONIA + ORGANIC DIS. (MG/L AS N) .37 .43 .6344 .33 .56 .28 .28 .32 .64 .44 .25 .54	ORTHO, DIS- SOLVED (MG/L AS P) .03 .02 .02 .08 .00 .03 .04 .04 .04	DIS- SOLVED (UG/L AS FE) 140 50 50 20 20 20 20 20 30 40	NESE, DIS- SOLVED (UG/L AS MN) 40 10 0 20 0 10 10 10 0 10	ORGANIC DIS- SOLVED (MG/L AS C)			

Table 5.--Water-level records and chemical [Well number 32 on figure 2. Local well number is SB00506425DBD1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	28.09 28.17 28.48 28.08 27.43	74-04-04 74-05-09 74-06-14 74-07-12 74-08-27	2560 2700 2740 2690 2620	7.3 7.3 7.4 7.4	13.0 13.5 14.0 14.5 14.0	990 1100 1000 990 940	670 730 710 670 630	230 240 250 230 210
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	27.20 27.37 27.41 27.85 28.59	74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	2590 2550 2800 2650 2700	7.2 7.0 6.9 7.0	14.0 13.5 13.0 13.0 13.5	940 940 950 890 840	630 650 650 570 220	210 220 220 200 200
75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	28.57 27.54 28.18 .28.97 28.18	75-08-11 75-12-01 76-03-29 76-06-29 76-09-22	3100 3000 2 4 50 2700 2800	7.2 7.2 7.4 6.4 6.9	14.5 12.0 11.0 12.0 11.5	950 960 900 990 1100	530 600 4 70 360 510	220 230 210 240 270
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	27.28 28.23 28.60 28.49 27.73	76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	2600 3000 3100 2800 2600	7.2 7.5 7.1 7.1 7.0	11.0 11.5 12.0 12.0 11.0	1000 1100 1100 990 960	540 480 230 450 390	240 260 260 240 220
78-03-09 78-06-20	27.80 28.89	78-03-09 78-06-20	3000 2600	7.0 7.0	11.5 12.0	1100 960	490 110	250 220
	WATER				SOLIDS,	NITRO-	NITRO-	NITRO-
DATE OF WATER-LEVEL MEASUREMENT	LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
WATER-LEVEL	LEVEL (FEET BELOW LAND	OF	RIDE, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRATE DIS- SOLVED (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 DIS- SOLVED (MG/L
WATER-LEVEL MEASUREMENT 74-04-04 74-05-08 74-06-14 74-07-23	LEVEL (FEET BELOW LAND SURFACE) 28.09 28.17 28.48 28.08	0F SAMPLE 74-04-04 74-05-09 74-06-14 74-07-12	RIDE, DIS- SOLVED (MG/L AS F) 1.5 1.4 1.5	DIS- SOLVED (MG/L AS SIO2) 17 18 18	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 2040 2060 2090 1950	GEN, NITRATE DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6	GEN, NITRITE DIS- SOLVED (MG/L AS N) .01 .01	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6 2.4
WATER-LEVEL MEASUREMENT 74-04-04 74-05-08 74-06-14 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	28.09 28.17 28.48 28.08 27.43 27.20 27.37 27.41 27.85	OF SAMPLE 74-04-04 74-05-09 74-06-14 74-07-12 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06	RIDE, DIS- SOLVED (MG/L AS F) 1.5 1.5 1.5 1.5 1.5 1.3 1.4	DIS- SOLVED (MG/L AS SIO2) 17 18 18 18 18 17 17	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 2040 2060 2090 1950 1890 1870 1850 1850 1790	GEN, NITRATE DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6 1.8 1.7 1.3 4.6	GEN, NITRITE DIS- SOLVED (MG/L AS N) .01 .01 .01 .00 .00	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6 2.4 2.2 1.8 1.7 1.3 4.6
WATER-LEVEL MEASUREMENT 74-04-04 74-05-08 74-06-14 74-07-23 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	LEVEL (FEET BELOW LAND SURFACE) 28.09 28.17 28.48 27.43 27.20 27.37 27.41 27.85 28.59 28.57 27.54 28.18 28.97	OF SAMPLE 74-04-04 74-05-09 74-06-14 74-07-12 74-08-27 74-10-03 74-11-11 74-12-05 75-02-06 75-05-14 75-08-11 75-12-01 76-03-29 76-06-29	RIDE, DIS- SOLVED (MG/L AS F) 1.5 1.5 1.5 1.3 1.4 1.3 1.3 1.2	DIS- SOLVED (MG/L AS SIO2) 17 18 18 18 18 17 17 17 19 19 16 16 16	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 2040 2090 1950 1890 1870 1850 1790 1450 1730 1950 1800 1930	GEN, NITRATE DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6 1.8 1.7 1.3 4.6 .14 .26 1.1	GEN, NITRITE DIS- SOLVED (MG/L AS N) .01 .01 .01 .00 .00 .00 .00 .01 .01	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 2.4 3.2 3.6 2.4 2.2 1.8 1.7 1.3 4.6 .15 .27 1.1 1.3 1.2

analyses of water from observation wells--Continued

Depth is 68 ft. Interval open to the aquifer is 48 to 68 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	, SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE (MG/L AS	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
100 110 100 100 100	270 250 280 270 270	3.7 3.4 3.8 3.7 3.8	8.2 8.3 7.6 5.5 9.8	381 394 400 387 368	0 0 0 	313 323 328 317 302	1100 1100 1100 1000 950	110 120 120 120 140
100 96 98 95 82	250 270 250 250 190	3.6 3.8 3.5 3.6 2.9	8.8 5.4 7.4 8.3 7.4	369 365 372 394 747	 0	303 299 305 323 613	950 910 940 870 450	140 140 130 130 130
98 94 91 95 99	210 260 250 280 310	3.0 3.7 3.6 3.9 4.1	8.5 8.3 8.5 8.4 8.9	518 444 529 771 703	0 0 0 0	425 364 434 632 577	800 980 830 750 1000	120 140 130 150 140
100 100 110 96 100	300 310 300 340 300	4.1 4.1 3.9 4.7 4.2	7.9 7.9 8.1 7.4 7.5	577 714 1060 660 700	0 0 0 0	473 586 869 540 570	970 860 690 890 760	140 160 160 140 140
120 100	280 270	3.6 3.8	7.4 7.9	770 1040	0 0	630 850	670 460	160 150
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)			CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L	GEN,AM- F MONIA + ORGANIC DIS. (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L			-
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .05 .03	GEN,AM- F MONIA + ORGANIC DIS. (MG/L AS N) .46 .51 .73	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .01 .04	IRON, DIS- SOLVED (UG/L AS FE) 590 80 20 30	NESE, DIS- SOLVED (UG/L AS MN) 120 20 0	ORGANIC DIS- SOLVED (MG/L			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .05 .03 .04 .00	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .46 .51 .73 .47 .40 .42 .21 .49	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .01 .04 .05 .06 .02 .01 .03 .01	IRON, DIS- SOLVED (UG/L AS FE) 590 80 20 30 20 50 30 10 40	NESE, DIS- SOLVED (UG/L AS MN) 120 0 0 0 30 30 10 0	ORGANIČ DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .09 .05 .03 .04 .00 .01 .00	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .46 .51 .7347 .40 .42 .21 .49 1.0 .62 .77 .69 .95	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .02 .01 .05 .06 .02 .01 .03 .01 .03 .01 .03	IRON, DIS- SOLVED (UG/L AS FE) 590 80 20 30 20 50 30 10 40 100 70 90 140 170	NESE, DIS- SOLVED (UG/L AS MN) 120 0 0 30 30 30 0 10 0 50 170 170 420 1500	ORGANIC DIS- SOLVED (MG/L AS C)			

Table 5.--Water-level records and chemical [Well number 37 on figure 2. Local well number is SB00506426ADD1.

DATE OF WATER-LEVEL MEASUREMENT	WATER LEVEL (FEET BELOW LAND SURFACE)	DATE OF SAMPLE	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM, DIS- SOLVED (MG/L AS CA)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	26.67 27.05 27.19 27.09 25.74	74-04-04 74-05-08 74-06-14 74-07-24 74-08-28	2270 2490 2220 2230 2330	7.1 7.3 7.4 7.3	12.5 13.0 13.5 14.0 13.0	860 1000 860 850 940	490 630 500 480 570	200 240 200 190 220
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	25.43 25.73 25.91 26.59 27.66	74-10-04 74-11-11 74-12-05 75-02-06 75-05-14	2270 2450 2650 2700 2800	7.1 7.0 6.8 7.0	12.5 12.0 13.0 12.5 13.5	860 930 950 1000 850	490 560 570 610 490	200 220 220 220 190
75-08-12 75-12-02 76-03-29 76-06-28 76-09-22	28.03 25.99 27.01 27.87 25.93	75-08-12 75-12-02 76-03-29 76-06-28 76-09-22	2600 3200 2400 2100 2200	7.3 7.3 7.3 7.1 7.1	13.5 13.0 12.0 13.5 13.0	770 970 920 720 830	410 600 530 380 480	170 230 220 160 190
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	26.18 27.08 27.89 26.92 26.62	76-12-08 77-03-08 77-06-15 77-09-12 77-12-06	2600 3100 2600 2300 2400	7.3 7.4 7.5 7.3 7.3	12.5 13.0 13.5 13.0 12.0	1100 1100 880 850 900	700 700 520 480 530	250 260 200 190 200
78-03-09 78-06-20	27.16 27.68	78-03-09 78-06-20	2400 2700	7.2 7.6	13.0 14.0	900 1100	530 750	200 260
DATE OF WATER-LEVEI MEASUREMENT		DATE OF E) SAMPLE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	AS	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
74-04-04 74-05-08 74-06-14 74-07-23 74-08-27	26.67 27.05 27.19 27.09 25.74	74-04-04 74-05-08 74-06-14 74-07-24 74-08-28	3 2.4 4 2.5 4 1.9	25 26 25 26 26	1620 1870 1640 1610 1710	5.7 5.7 7.4	.31 .02 .01	6.0 5.7 7.4 7.3
74-10-03 74-11-11 74-12-05 75-02-06 75-05-14	25.43 25.73 25.91 26.59 27.66	74-10-04 74-11-12 74-12-09 75-02-00 75-05-14	1 1.6 5 1.7 5 1.7	26 25 24 26 24	1680 17 4 0 1750 1880 1620	12 10 13 8.7	.01 .00 .00 .00	9.0 12 10 13 8.7
75-08-12 75-12-02 76-03-29 76-06-28 76-09-22	28.03 25.99 27.01 27.87 25.93	75-08-1: 75-12-0: 76-03-2: 76-06-2: 76-09-2:	2 1.4 9 1.8 8 1.9	24 18 23 23 24	1530 1980 1740 1450 1630	6.9 11 12 7.6 9.8	.01 .01 .00 .00	6.9 11 12 7.6 9.8
76-12-08 77-03-08 77-06-15 77-09-13 77-12-06	26.18 27.08 27.89 26.92 26.62	76-12-0 77-03-0 77-06-1 77-09-1 77-12-0	8 1.9 5 1.8 2 1.8	23 25 24 26 25	2210 2060 1740 1650 1710	20 7.7 11 9.0	.00 .01 .00 .00	20 7.7 11 9.0
78-03-09 78-06-20	27.16 27.68	78-03-09 78-06-2		23 21	1630 1980	11 30	.00 .03	11 30

analyses of water from observation wells--Continued

Depth is 68 ft. Interval open to the aquifer is 64 to 68 ft]

MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SODIUM AD- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L	ALKA- LINITY (MG/L AS CACO3)	SULFATE, DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
88 100 88 91 94	220 220 210 210 210	3.3 3.0 3.1 3.1 3.0	6.6 6.8 6.1 5.3 7.8	459 460 438 446 450	0 0 0 	376 377 359 366 369	730 910 770 7 4 0 780	93 110 90 94 100
87 93 98 110 92	210 230 220 2 40 220	3.1 3.3 3.1 3.3 3.3	6.6 4.5 6.0 6.6 5.4	447 458 465 478 446	 0	367 376 381 392 366	790 780 800 850 730	96 110 110 130 100
84 97 90 79 87	200 260 220 200 210	3.1 3.6 3.2 3.2 3.2	6.4 7.4 6.9 5.8 6.2	438 460 472 419 436	0 0 0 0	359 377 387 344 358	710 960 780 650 760	85 130 110 86 91
110 110 93 90 97	270 270 240 220 220	3.6 3.5 3.5 3.3 3.2	7.2 7.1 6.3 5.8 6.1	455 487 440 440 450	0 0 0 0	373 399 361 360 370	1100 960 800 760 790	130 150 110 96 99
98 110	20 0 2 40	2.9 3.1	6 .4 6 . 9	450 430	0 0	370 350	790 830	43 170
	NITRO-	PHOS-						
NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .05 .08 .03	GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHORUS, ORTHO, DIS- SOLVED (MG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	ORGANIC DIS- SOLVED (MG/L			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .05 .08 .03 .03 .03 .03 .03	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) 1.2 .62 .72	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .01 .05 .06	DIS- SOLVED (UG/L AS FE) 40 20 0	NESE, DIS- SOLVED (UG/L AS MN) 210 110 0	ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .05 .08 .03 .03 .03 .03	GEN,AM-MONIA + ORGANIC DIS. (MG/L AS N) 1.2 .62 .72 .63 .44 .49 .34 .45 .21 .16 .81 .29 .33 .41	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .01 .05 .06 .07 .02 .03 .05 .03 .04 .03 .04 .03 .04	DIS- SOLVED (UG/L AS FE) 40 20 0 50 60 10 10 20 60 10 20 40 30	NESE, DIS- SOLVED (UG/L AS MN) 210 110 0 0 0 0 10 0 5	ORGANIC DIS- SOLVED (MG/L AS C)			
GEN, AMMONIA DIS- SOLVED (MG/L AS N) .05 .08 .03 .03 .03 .03 .03 .01 .00	GEN,AM-MONIA + ORGANIC DIS. (MG/L AS N) 1.2 .62 .72 .63 .44 .49 .34 .45 .21 .16 .81 .29 .33	PHORUS, ORTHO, DIS- SOLVED (MG/L AS P) .03 .01 .05 .06 .07 .02 .03 .05 .03 .04 .03 .03 .01 .05	DIS- SOLVED (UG/L AS FE) 40 20 0 50 60 10 10 20 60 10 20 40	NESE, DIS- SOLVED (UG/L AS MN) 210 110 0 0 0 0 0 0 0 0 0 5	ORGANIC DIS- SOLVED (MG/L AS C)			

Table 6.--Chemical analyses of water from domestic, stock, and irrigation wells

- 1	1	1							
	,50N+ ₂ ON, HO ₂ , beyfozeib (M Sb J\gm)	7.9	9.0	7.3	5.4	1.3	4.9	7.0	1.7
	Chloride, dissolved (mg/L as Cl)	20,	110	150	140	120	80	84	100
	lfate, dissolved) (پا30 se الم	094	830	1,500	1,200	840	780	800	810
	bəvíozsib ,muisəngeM (pM se J\pm)	53	82	130	97	9	72	87	89
	beviozsib ,muisled (EJ ze J\gm)	130	220	300	160	230	190	190	190
	Hardness (mg/L as CaCO ₃)	540	890	1,300	800	820	770	830	840
	Temperature (3°)	17.5	14.5	15.0	14.0	13.5	13.0	13.0	14.5
	(edinu) Hq	7.3	6.9	7.3	7.1	7.3	7.3	7.3	7.2
	Specific conduct- ance (micromhos)	1,600	2,350	3,550	3,100	2,300	2,050	2,180	2,500
	Uepth of well (feet)	-	40	107	100	75	83	37	62
	əfqmas ło ətad (d-M-Y)	74-07-09	74-07-09	74-07-12	74-07-09	74-07-09	74-07-08	74-07-08	74-07-09
	ГОСЯ] мејј илшрек	SB00506319CDC1	SB00506330ACC1	SB00506330BCC1	SB00506330DBB1	SB00506330DCC1	SB00506423BBC1	SB00506424AAA1	SB00506426ACC1
	Site number in figure 2	-	٣	2	7	∞	6	17	36

Table 7.--Chemical analyses of water from two runoff-retention ponds and

		1		
	Alkalinity (mg/L as CaCO ₃)	344	107	288 1,480 750
	Carbonate ($_{3}$)	0	0	0010
	Bicarbonate (₆ 03H zs J\pm)	420	130	351 1,810 534 910
877	Potassium, dissolvėd (mg/L as K)	5.9	12	7.8 690 29 52
iht we	noitqrosbs ,muibo2 oiter	3.1	1.6	3.5.3
by eig	bəviossib ,muiboč (my/L ss 1/em)	220	34	230 210 230 290
the feedlot water system supplied by eight wells	bəvfozzib ,muizəngsM (gM zs J\gm)	97	5.5	96 210 92 100
ystem	Calcium, dissolved (mg/L as Ca)	230	25	200 540 220 250
ter s	Hardness, noncarbonate (mg/L as CaCO ₃)	630	0	610 730
dlot wa	esanbaeH (₆ 03ь3 гь J\рm)	970	85	890 2,200 930
he fee	Temperature (°C)	12.5	7.0	18.0
from t	(sjinu) Hq	6.9	7.7	7.9
••	Specific conductance (micromhos)	2,600	360	2,500 5,500 3,100
	əfqmas ło ətad (q-m-y)	75-03-18	75-03-18	75-03-18 76-09-22 77-03-08 77-06-15
	эты эjiZ	Feedlot water system	Northeast reten- tion pond	Southeast reten- tion pond

Table 7.--Chemical analyses of water from two runoff-retention ponds and from the feedlot water system supplied by eight wells--Continued

bəviozzib ,əzənsgamaM (nM zs J\gu)	10	90	70 4,000 150 350
lron, dissolved (µg/L as Fe)	10	360	20 9,500 340 360
Phosphorus, ortho, dissolved (mg/L as P)	90.0	7.3	.19
Nitrogen, ammonia + organic, dissolved (mg/L as N)	0.29	4.5	1.1 220 15 69
Nitrogen, ammonia, dissolved (mg/L as N)	0.01	.8	.40 38 5.7 25
Nitrogen, NO ₂ +NO ₃ , dissolved (mg/L as N)	9.8	90.	3.7 1.7 1.0 1.0
Nitrogen, nitrite, dissolved (mg/L as N)	00.00	.00	.00 .00 .00
Nitrogen, nitrate, dissolved (mg/L as N)	8.6	90.	3.5 1.6 .03
con come solids, sum of con- stituents, dissolved (mg/L)	1,830	240	1,740
Silica, dissolved (mg/L as SiO ₂)	23	Ξ	8.6 54 25 31
Fluoride, dissolved (mg/L as F)	1.6	.7	- 2
Chloride, dissolved (mg/L as Cl)	100	22	170 380 120 130
bəvlozzib ,əfefluð (O2 zs J\gm)	910	43	840 480 820 790
bled of sample (d-M-Y)	75-03-18	75-03-18	75-03-18 76-09-22 77-03-08 77-06-15
əmen ∋jiZ	Feedlot water system	Northeast retention pond	Southeast retention pond

Table 8.--Logs of wells drilled by the U.S. Geological Survey

	Thick- ness (feet)	Depth (feet)
Well 6. Altitude: 4,579 feet		
Topsoil, fine-grained	5 5 5 5	5 10 15 20
Gravel, fine- to coarse-grained; some coarse-grained sand; some clay	15 5	40 45
coarse-grained gravel	5 5 5	50 55 60
Sand, coarse-grained; some fine- to medium-grained gravel; some clay; hard drilling	5 5 5 1	65 70 75 80 81
Sand, coarse-grained; fine- to medium-grained gravel; some clay	4 5	85 90
Clay, beige, sandy; some coarse-grained sand; some fine- to medium-grained gravel; hard drilling	10 5	100 105 110
Clay, dense, darkShale, dark gray	5 5 4	115 119

Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued

	Thick- ness (feet)	Depth (feet)
Well 11. Altitude: 4,595 feet		
Clay, dark; medium-grained gravel; some sand	5 5 5	5 10 15 .
Sand, medium-grained; fine-grained gravel	5 10	20 30
Sand, coarse-grained; coarse-grained gravel	10 5 5	40 45 50
Gravel, medium-grained; some clayey sand; some coarse-grained gravel	5	55
Gravel, medium- to coarse-grained Gravel, coarse; boulders Clay, sandy Sand; gravel Clay, sandy; some sand; some fine-grained gravel	10 5 9 1 5	65 70 79 80 85
Clay, light brown, sandy	7 18 5 2	92 110 115 117
Well 13. Altitude: 4,599 feet		
Sand, fine-grained, clayey	15 5 3 1 4	15 20 23 24 28
Sand, fine- to coarse-grained; fine- to medium-grained gravel; poorly sorted	7 11 3 31	35 46 49 80
Clay Sand, coarse-grained, fine- to medium-grained gravel	28	108 128
Shale	3	131

Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued

Thick- ness (feet)	Depth (feet)
40	40
17	57
4	61
7	6 8
	75 80
כ	80
5	85
_	- 1
9	94
14	108
2	110
10	120
14	134
4	4
5	9 15
	20
5	25
Е	20
_	30 35
5	40
5	45
4	49
2	51
3	54
	56
4 4	60 64
	ness (feet) 40 17 4 7 7 5 5 9 14 2 10 14 4 5 6 5 5 5 5 5 4 2 4

Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued

	Thick- ness (feet)	Depth (feet)
Well 23. Altitude: 4,588 feetContinue	:d	
Sand, coarse-grained; fine-grained gravel, broken chips Gravel, fine- to coarse-grained, broken chips Gravel, fine- to medium-grained, well-sorted Gravel, medium- to coarse-grained, chips, well-sorted Sand, coarse-grained; medium-grained gravel; some clay	2 4 5 5 4	66 70 75 80 84
Clay; some medium- to coarse-grained gravel	6 5 3 3	90 95 98 101
Well 26. Altitude: 4,584 feet		
Sand, clayey; some gravel	5 5 5 10	5 10 15 20 30
Gravel, coarse-grained Sand, coarse-grained; fine-grained gravel; some clay Shale, gray	20 50 3	50 100 103
Well 28. Altitude: 4,592 feet		
Sand Clay Sand; fine-grained gravel Gravel Clay	8 8 17 19 2	8 16 33 52 54
Gravel Clay Gravel Clay Clay Clay	18 6 5 12 8	72 78 83 95 103
Clay Gravel	2 3 	105 108 108

Table 8.--Logs of wells drilled by the U.S. Geological Survey--Continued

	Thick- ness (feet)	Depth (feet)
Well 32. Altitude: 4,582 feet		
Sand, fine-grained, clayey	5 10 5 5	5 15 20 25
Sand, coarse-grained; some fine- to medium-grained gravel Gravel, fine- to medium-grained Gravel, coarse-grained Silt, clayey; some gravel; some sand Sand, fine-grained; fine-grained gravel	5 5 5 5	30 35 40 45 50
Gravel, medium- to coarse-grainedGravel, fine- to coarse-grained	10 9 	60 69 69
Well 37. Altitude: 4,586 feet		
Topsoil	5 5	5 10
clay	10 5 5	20 25 30
Sand; gravel; some clayey sand	10 5 5	40 45 50
sandGravel, coarse-grained; some medium-grained sand	5 7	55 62
Boulder, hard drilling	2 4 1	64 68 69

Table 9.--Particle-size analyses, statistical total porosity and vertical hydraulic conduc-

	Percentage of sample by particle size by weight Diameter, in millimeters											
Depth of sample (feet)	Clay <0.004	Silt 0.004 to 0.0625	Very fine sand 0.0625 to 0.125	Fine sand 0.125 to 0.25	Medium sand 0.25 to 0.5	Coarse sand 0.5 to 1	Very coarse sand 1 to 2	Very fine gravel 2 to 4	Fine gravel 4 to 8	Medium gravel 8 to 16	Coarse gravel 16 to 32	Very coarse gravel 32 to 64
Well 13												
2.0- 2.5 3.0- 3.5 4.0- 4.5 5.0- 5.5 7.0- 7.5	5.4 5.9 5.2 5.2 2.7	13.4 14.0 11.0 10.5 6.1	10.7 12.2 15.3 14.1 13.1	19.9 20.8 33.6 33.1 32.5	14.0 18.8 19.3 18.7 22.4	20.3 14.1 14.2 14.3 22.0	13.2 9.2 1.5 4.1	3.1 2.8 0 0	0 1.1 0 0	0 1.0 0 0	0 0 0 0	0 0 0 0
9.0- 9.5 11.0-11.5 13.0-13.5 16.0-16.5 18.5-19.0	4. 3. 5. 4.7 11.4	Žį.	10.4 12.4 14.3 19.1 25.6	27.2 45.9 34.1 42.7 23.1	24.6 33.9 21.2 22.5 7.8	30.9 4.3 14.5 3.7 3.1	2.5 0 10.7 .2 .2	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
21.5-22.0 24.5-25.0 26.0-26.5 28.5-29.0 29.0-29.5	4.6 4.6 4.2 1.5 1.6	11.3 4.8 9.2 7.2 6.4	13.8 19.6 8.9 4.0 3.6	22.2 30.6 16.4 11.0 7.9	16.2 23.9 9.8 15.4 12.7	11.0 12.8 14.6 14.7 14.7	14.5 3.7 13.6 15.8 16.7	6.2 0 15.6 15.7 21.6	.3 0 6.0 11.9 11.1	0 0 1.8 2.7 3.8	0 0 0 0	0 0 0 0
9.5-10.0	10.7	12.8	10.0	21.3	<u>Well</u> 18.6	28 13.1	10.8	2.7	0	0	0	0

characteristics, specific gravity, moisture content, tivity for samples from observation wells 13 and 28

Median particle Size, diameter in millimeters	Sorting coefficient	Skewness	Kurtosis	Uniformity coefficient	Specific gravity of solids	Moisture content, percent by weight	Moisture content, percent by volume	Total porosity	Vertical hydraulic conductivity at 15.6°C, meter per day	
<u>Well 13</u>										
0.26 .23 .18 .19 .23	2.8 2.7 2.0 2.0 1.9	1.0 .95 .99 1.1 1.2	0.24 .19 .21 .20	32 21 7.7 8.5 4.5	2.67 2.68 2.69 2.69 2.69	4.76 6.94 5.68 5.36 4.40	8.38 11.38 8.52 9.38 6.38	34.23 38.65 44.11 34.90 46.93	2.2 .86	
.31 .21 .23 .17 .081	1.9 1.5 1.9 1.6 2.3	1.0 1.1 1.3 .91 .76	.29 .26 .19 .22	4.6 2.7 3.9 4.2 37	 2.70 2.70	3.80 5.06 3.95 3.22 10.52	5.7 5.85 4.44 14.73	44.03 44.98 48.04 47.76	5.2 	
.24 .20 .54 .83	2.8 1.9 3.6 3.1 2.9	1.4 1.0 .89 .96	.20 .22 .24 .22 .24	12 4.0 25 17 19	2.71 2.69 2.69 2.69 2.69	2.47 4.34 2.35 2.71 1.36	6.55	43.90 36.42	.93 .04	
•		0.5		_	11 28		45 55	20 ==	2 :	
.21	2.8	.83	. 19	216	2.67	9.66	15.55	39.70	3.4	

Table 10.--Monthly precipitation, in inches, from January 1975 to September 1978 at weather stations operated by the feedlot owner at the feedlot and by the U.S. Department of Commerce, National Weather Service at Greeley, Colo.

Month	1975		19	76	1977		1978	
	Feedlot	Greeley	Feedlot	Greeley	Feedlot	Greeley	Feedlot	Greeley
Jan.	0.12	0.02	0.02	0.10	0.38	0.13	0.40	0.50
Feb.	.12	. 14	. 14	.50	.00	trace	.10	.13
Mar.	. 58	. 75	.28	. 49	.30	.44	. 15	.09
Apr.	1.26	1.86	1.13	1.76	2.87	2.21	2.48	1.83
May	4.88	5.34	3.13	3.69	1.20	1.91	3.40	5.22
June	.80	2.02	1.42	. 74	.38	.70	1.70	1.37
July	3.00	2.72	1.90	1.36	.70	2.16	.93	.70
Aug.	1.84	.63	.85	.90	1.02	1.48	.64	.53
Sept.	.64	.41	2,21	1.92	.20	. 14	.00	trace
Oct.	.25	.32	.40	. 35	.07	.10		
Nov.	.65	1.00	.04	.08	. 45	.42		
Dec.	. 42	.87	.05	.12	.72	.29		
Total	14.56	16.08	11.57	12.01	8.29	9.98	9.80	10.37